ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Microbial Techniques in Agriculture, Environment, and Health Management: Impact and Disposal Strategies

دانلود کتاب تکنیک های میکروبی پیشرفته در کشاورزی، محیط زیست و مدیریت بهداشت: تاثیر و استراتژی های دفع

Advanced Microbial Techniques in Agriculture, Environment, and Health Management: Impact and Disposal Strategies

مشخصات کتاب

Advanced Microbial Techniques in Agriculture, Environment, and Health Management: Impact and Disposal Strategies

ویرایش:  
نویسندگان: , , ,   
سری: Developments in Applied Microbiology and Biotechnology 
ISBN (شابک) : 0323916430, 9780323916431 
ناشر: Academic Press 
سال نشر: 2023 
تعداد صفحات: 338
[340] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Advanced Microbial Techniques in Agriculture, Environment, and Health Management: Impact and Disposal Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکنیک های میکروبی پیشرفته در کشاورزی، محیط زیست و مدیریت بهداشت: تاثیر و استراتژی های دفع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تکنیک های میکروبی پیشرفته در کشاورزی، محیط زیست و مدیریت بهداشت: تاثیر و استراتژی های دفع

تکنیک های پیشرفته میکروبی در کشاورزی، محیط زیست و مدیریت بهداشت: استراتژی های تاثیر و دفع دیدگاه های فعلی در زمینه های کشاورزی، محیط زیست و بهداشت را ارائه می دهد. این مرجع مهم، پیشرفت‌های اخیر در فناوری میکروبی کاربردی را ارائه می‌کند و آن را به صورت جامع تدوین کرده و فناوری میکروبی کاربردی را از شرایط آزمایشگاهی به سطح مزرعه منتقل می‌کند. در 20 فصل، این کتاب بر روی مداخلات میکروبی برای تاکتیک‌های مدیریت زیست محیطی همه‌گیر و مقرون‌به‌صرفه تمرکز می‌کند، در حالی که خدمات میکروبی تجمعی درگیر در ارتقاء کشاورزی، محیط‌زیست و سلامت را به هم مرتبط می‌کند. علاوه بر این، این کتاب اطلاعات دقیقی در مورد مسائل زیست محیطی نوظهور ارائه می دهد و راه هایی برای کنترل پیامدهای آنها با استفاده از رویکردهای مختلف برای درمان پیشنهاد می کند. ارائه اطلاعات مفهومی و پیشرفت‌های اخیر در خدمات میکروبی مرتبط با افزایش پایداری زیست‌محیطی. راه‌حل‌های بالقوه برای مشکلات مختلفی مانند بهره‌وری پایین کشاورزی، انتشار آلاینده‌های مضر از منابع طبیعی و انسانی، و توسعه بیماری‌ها در گیاهان و انسان‌ها ارائه می‌دهد. دانش عمیق در مورد مشارکت میکروبی به عنوان تلقیح زیستی، منابع آنزیمی و ضد میکروبی


توضیحاتی درمورد کتاب به خارجی

Advanced Microbial Techniques in Agriculture, Environment and Health Management: Impact and Disposal Strategies provides current perspectives on the fields of agriculture, the environment and health. This important reference presents recent advancements in applied microbial technology, compiling it in a comprehensive manner and transferring applied microbial technology from laboratory conditions to field level. In 20 chapters, the book focuses on microbial interventions for all-inclusive, cost-effective environmental management tactics while also linking the cumulative microbial services involved in the up-gradation of agriculture, environment and health. In addition, the book offers detailed information on emerging environmental issues and proposes ways of controlling their consequences using different approaches to treatment. Provides conceptual information and recent advances in microbial services involved in enhancing environmental sustainability Offers potential solutions for a variety of problems like low agricultural productivity, emission of harmful contaminants from both natural and anthropogenic sources, and disease development in plants and humans Contains applied, in-depth knowledge on microbial contributions as bio-inoculants, enzymatic sources and antimicrobials



فهرست مطالب

Front Cover
Advanced Microbial Techniques in Agriculture, Environment, and Health Management
Copyright Page
Contents
List of contributors
1 Beneficial microbes for sustainable agroecosystem
	1.1 Introduction
	1.2 Beneficial microbes in agriculture
	1.3 Beneficial microbes: a key element for sustainable agricultural system
	1.4 Rhizosphere: a hot spot of beneficial microbes
		1.4.1 Beneficial microbes
			1.4.1.1 Plant growth promoting bacteria
			1.4.1.2 Mycorrhizal fungi
			1.4.1.3 Actinomycetes
		1.4.2 Nutrient management by beneficial microbes
			1.4.2.1 Role of beneficial microbes in phosphorus solubilization
			1.4.2.2 Role of beneficial microbes in potassium solubilization and mobilization
		1.4.3 Role of beneficial microbes in production of plant growth regulators
		1.4.4 Beneficial microorganisms as biofertilizers and biopesticides
		1.4.5 Role of beneficial microbes in abiotic stress
		1.4.6 Role of beneficial microbes as a biocontrol agent
	1.5 Conclusion
	References
2 Strategies and implications of plant growth promoting rhizobacteria in sustainable agriculture
	2.1 Introduction
	2.2 Plant growth promoting rhizobacteria and plant interaction
	2.3 Plant growth promoting rhizobacteria: mechanisms of action
		2.3.1 Biological nitrogen fixation
		2.3.2 Phosphorous solubilization
		2.3.3 Zinc solubilizing bacteria
		2.3.4 ACC deaminase production
		2.3.5 Phytohormone production
		2.3.6 Siderophore production for iron acquisition
		2.3.7 Antibiotic production
		2.3.8 Biosurfactant production
	2.4 Plant growth promoting rhizobacteria in abiotic stress remediation
	2.5 Plant growth promoting rhizobacteria in biotic stress remediation
	2.6 Induced systemic resistance
	2.7 Commercialization of plant growth promoting rhizobacteria-based bioproducts
	2.8 Conclusion and future prospects
	Acknowledgment
	References
3 Role of quorum sensing in plant–microbe interactions
	3.1 Introduction
	3.2 Quorum sensing in rhizobacterial community colonization
	3.3 Quorum sensing and plant disease protection
	3.4 Quorum sensing in nitrogen-fixing rhizobia
	3.5 Quorum sensing in rhizosphere engineering
	3.6 Conclusion
	References
4 Microbial services for mitigation of biotic and abiotic stresses in plants
	4.1 Introduction
	4.2 Different types of stresses
		4.2.1 Abiotic stress
		4.2.2 Biotic stress
	4.3 Microbial resources for alleviation of stress in plant
		4.3.1 Bacterial-assisted drought mitigation in plants
		4.3.2 Bacterial-assisted salinity mitigation in plant
		4.3.3 Bacterial-assisted heavy metal stress mitigation
		4.3.4 Bacterial-assisted cold stress mitigation
		4.3.5 Bacterial-assisted biotic stress mitigation
	4.4 Microbial effects on crop productivity under stress conditions
	4.5 Agricultural application of stress-tolerant microorganisms
	4.6 Conclusion
	References
5 Prospects of biotechnology for productive and sustainable agro-environmental growth
	5.1 Introduction
	5.2 Genetic engineering and sustainable agriculture
	5.3 Role of microorganisms in agriculture
		5.3.1 Biofertilizers in agroecosystem
		5.3.2 Biopesticides, biofungicides, and bioinsecticides in agroecosystem
		5.3.3 Plant–microbial interaction: mycorrhiza and plant growth-promoting rhizobacteria
	5.4 Nanotechnology in agriculture
		5.4.1 Nanofertilizers
		5.4.2 Nanopesticides
		5.4.3 Nanotechnology for improved soil quality
		5.4.4 Nanotechnology in food industry
	5.5 Conclusion and future prospects
	References
6 Biofertilizers: a microbial-assisted strategy to improve plant growth and soil health
	6.1 Introduction
	6.2 What is a biofertilizer?
	6.3 Need for biofertilizers at higher altitudes
	6.4 Preparation of biofertilizer: steps and standards
	6.5 Types of bioformulations
		6.5.1 Solid bioformulation
			6.5.1.1 Dried powder (dust)
			6.5.1.2 Granules
			6.5.1.3 Wettable powders
			6.5.1.4 Wettable/water-dispersible granules
		6.5.2 Liquid bioformulation
		6.5.3 Encapsulated bioformulations
	6.6 Types of biofertilizers
		6.6.1 Nitrogen-fixing biofertilizers
			6.6.1.1 Symbiotic nitrogen-fixing biofertilizers
			6.6.1.2 Free-living nitrogen-fixing biofertilizers
			6.6.1.3 Associative symbiotic nitrogen-fixing biofertilizers
		6.6.2 Phosphate solubilizing biofertilizers
		6.6.3 Phosphate-mobilizing biofertilizers
		6.6.4 Potassium-solubilizing biofertilizers
		6.6.5 Iron-solubilizing biofertilizers
		6.6.6 Zinc-solubilizing biofertilizer
	6.7 Mode of biofertilizer application
		6.7.1 Foliar application
		6.7.2 Seed treatment
		6.7.3 Soil treatment
	6.8 Challenges of biofertilizer commercialization
		6.8.1 Biological constraints
		6.8.2 Technical constraints
		6.8.3 Regulatory constraints
		6.8.4 Marketing constraints
		6.8.5 Field-level constraints
		6.8.6 Biofertilizer carrier
	6.9 Conclusion
	Acknowledgment
	References
7 Biocontrol: an efficient solution for sustainable agriculture and food production
	7.1 Introduction
	7.2 Biological control: types
		7.2.1 Types of biocontrol strategies
			7.2.1.1 Classical biological control
			7.2.1.2 Augmentation control
			7.2.1.3 Seasonal biological control: type of augmentation
			7.2.1.4 Conservative biological control
	7.3 Biocontrol and biofertilization with microorganisms for sustainable agriculture
		7.3.1 Plant growth-promoting rhizobacteria
		7.3.2 Rhizobia
		7.3.3 Endophytic fungi
		7.3.4 Mycorrhizal fungi
		7.3.5 Rhizospheric fungi
		7.3.6 Bacterial endosymbionts and endophytes
		7.3.7 Microbes of various environments
		7.3.8 Viruses: biological control agents
	7.4 Examples of biocontrol agents used in agriculture
		7.4.1 Biocontrol of sugarcane Pyrilla
		7.4.2 Biocontrol of cotton bollworm
		7.4.3 Biocontrol of water hyacinth
		7.4.4 Biocontrol of woolly apple aphid
		7.4.5 Biocontrol of white woolly aphid
	7.5 Conclusion
	References
8 Impact of environmental pollutants on agriculture and food system
	8.1 Introduction
		8.1.1 Metals and metalloids
		8.1.2 Electronic waste
		8.1.3 Plastics
		8.1.4 Nanoparticles
		8.1.5 Radioactivity/nuclear reactors
		8.1.6 Pharmaceuticals and personal care products
		8.1.7 Sewage wastewater and sludge
		8.1.8 Particulate matter
		8.1.9 Dyes from textile industries
	8.2 Remediation for removal of chemical contaminants
	8.3 Conclusion
	References
9 Hazardous waste: impact and disposal strategies
	9.1 Introduction
	9.2 Classification of hazardous wastes
	9.3 Impact of hazardous waste
		9.3.1 Environment
		9.3.2 Humans
			9.3.2.1 Health consequences of exposure to hazardous chemicals
	9.4 Methods for identification and monitoring of hazardous waste
		9.4.1 Identification of hazardous waste: Indian scenario
	9.5 Strategies for hazardous waste management
		9.5.1 Physical strategies
			9.5.1.1 Incineration
			9.5.1.2 Landfilling
			9.5.1.3 Solidification/stabilization
			9.5.1.4 Deep-well injection
			9.5.1.5 Encapsulation
			9.5.1.6 Inertization
			9.5.1.7 Autoclaving
			9.5.1.8 Microwave irradiation
		9.5.2 Chemical strategies
			9.5.2.1 Chemical disinfection
			9.5.2.2 Chemical degradation
		9.5.3 Biological strategies
			9.5.3.1 Land treatment
			9.5.3.2 Enzymatic system
			9.5.3.3 Bioremediation
				9.5.3.3.1 Aerobic methods
				9.5.3.3.2 Anaerobic methods
		9.5.4 Modern hybrid technology
	9.6 Impact of mismanagement: illegal trafficking and poor transportation facility
		9.6.1 Hazardous waste transportation
		9.6.2 Illegal trafficking
	9.7 Conclusion
	References
10 Bioremediation of heavy metals by soil-dwelling microbes: an environment survival approach
	10.1 Introduction
	10.2 Sources of heavy metals
		10.2.1 Industrial source of heavy metals
		10.2.2 Natural source of heavy metals
		10.2.3 Agricultural source of heavy metal
		10.2.4 Domestic sources
		10.2.5 Other sources of heavy metal effluence
	10.3 Consequences of heavy metal toxicity on human and plant health
	10.4 Techniques for heavy metal removal
		10.4.1 Physical methods
		10.4.2 Chemical remediation
		10.4.3 Phytoremediation
			10.4.3.1 Phytoextraction
			10.4.3.2 Phytovolatilization
			10.4.3.3 Phytostabilization
			10.4.3.4 Rhizofiltration
			10.4.3.5 Rhizodegradation
		10.4.4 Microbial remediation of heavy metals
			10.4.4.1 Remediation by adsorption
			10.4.4.2 Remediation by biosorption
			10.4.4.3 Remediation by bioleaching
			10.4.4.4 Remediation by redox state change
	10.5 Genes involved in determining resistance against different heavy metals in bacteria
		10.5.1 Resistance to antimony and arsenic
		10.5.2 Resistance to mercury
		10.5.3 Resistance to nickel and cobalt
		10.5.4 Resistance to copper
		10.5.5 Resistance to cadmium
		10.5.6 Resistance to zinc
	10.6 Factors affecting microbial remediation
		10.6.1 pH
		10.6.2 Ambient temperature
		10.6.3 Substrate species
		10.6.4 Substrate concentration
		10.6.5 Condition of soil milieu
		10.6.6 Bioavailability of pollutants and biosurfactants
	10.7 Conclusion and future prospects
	References
11 Omics approaches to pesticide biodegradation for sustainable environment
	11.1 Introduction
	11.2 Biodegradation
	11.3 Parameters affecting biodegradation of pesticides
		11.3.1 Pesticide structure
		11.3.2 Pesticide concentration
		11.3.3 Pesticide solubility
		11.3.4 Soil types
		11.3.5 Soil moisture
		11.3.6 Temperature
		11.3.7 Soil pH
		11.3.8 Soil organic matter
		11.3.9 Soil microbial biomass
	11.4 Proteomics of pesticide biodegradation
	11.5 Molecular basis of pesticide degradation
	11.6 Metagenomic analysis
		11.6.1 Cultivation-independent methods
	11.7 Conclusion
	References
12 Microbial consortia and their application for environmental sustainability
	12.1 Introduction
	12.2 Microbial bioremediation of pollutants
		12.2.1 Potential microbial candidates
			12.2.1.1 Bacteria
				12.2.1.1.1 Aerobic
				12.2.1.1.2 Anaerobic
				12.2.1.1.3 Methanotrophs
			12.2.1.2 Ligninolytic fungi
			12.2.1.3 Algae
			12.2.1.4 Animals
			12.2.1.5 Plants
		12.2.2 Bioremediation: potential and sustainable process for environmental cleanup
			12.2.2.1 Immobilization
			12.2.2.2 Mobilization
		12.2.3 Mechanisms involved in bioremediation
			12.2.3.1 Adsorption
			12.2.3.2 Biosorption
			12.2.3.3 Molecular approach: genetically engineered microorganisms
		12.2.4 Enzymes for bioremediation
			12.2.4.1 Microbial oxidoreductases
				12.2.4.1.1 Microbial oxygenases
				12.2.4.1.2 Microbial laccases
				12.2.4.1.3 Microbial peroxidases
			12.2.4.2 Microbial hydrolytic enzymes
				12.2.4.2.1 Microbial lipases
				12.2.4.2.2 Microbial cellulases
				12.2.4.2.3 Microbial proteases
		12.2.5 Major bioremediation strategies/techniques and their types
			12.2.5.1 Bioremediation
				12.2.5.1.1 In situ
				12.2.5.1.2 Ex situ
	12.3 Rhizospheric soil-plant-microbe interactions
		12.3.1 Plant growth-promoting rhizobacteria
			12.3.1.1 Direct mechanisms
			12.3.1.2 Indirect mechanisms-
		12.3.2 Nitrogen-fixing microbes
		12.3.3 Nutrient-solubilizing microbes
		12.3.4 Nutrient-mobilizing microbes
			12.3.4.1 Role of mycorrhizal association
		12.3.5 Arbuscular mycorrhizal fungi
	12.4 Conclusion
	References
13 Recent advances in in silico approaches for removal of environmental pollutants
	13.1 Introduction
	13.2 In silico approaches
	13.3 In silico approach for toxicity analysis of pollutants
	13.4 Molecular docking approach for bioremediation
	13.5 Molecular dynamics simulation approach for bioremediation
	13.6 Biodegradation pathway prediction
	13.7 Metabolic pathway simulation of biodegradation
	13.8 Bioremediation using proteomics
	13.9 Bioremediation using genomics
	13.10 Systems biology methods
	13.11 Removal of environmental pollutants through artificial intelligence
	13.12 Conclusion
	References
14 Significance of nanoscale in macro-scale in various sectors such as agriculture, environment, and human health
	14.1 Introduction
	14.2 Nanomaterials in agriculture sector
		14.2.1 Crop enhancement: use of nanofertilizers
		14.2.2 Crop protection
		14.2.3 Crop improvement
		14.2.4 Fate of nanomaterial in soil
	14.3 Nanomaterial in environmental sector
		14.3.1 Wastewater and water remediation
			14.3.1.1 Nanoadsorbents
			14.3.1.2 Nanomembranes
			14.3.1.3 Nanocatalysts
		14.3.2 Remediation
			14.3.2.1 Metallic nanoparticles
			14.3.2.2 Semiconducting nanoparticles and dendrimers
			14.3.2.3 Carbon capture
		14.3.3 Sources of energy
			14.3.3.1 Solar cells
			14.3.3.2 Fuel cells
		14.3.4 Environmental sensing
			14.3.4.1 Gas sensors
			14.3.4.2 Heavy metal ion sensors
			14.3.4.3 Optical sensing
			14.3.4.4 Electrochemical sensing
	14.4 Negative aspects of nanotechnology
	14.5 Conclusion
	References
15 Recent advances in biofilm formation and their role in environmental protection
	15.1 Introduction
	15.2 Biofilm formation
		15.2.1 Events of signaling in biofilm formation
	15.3 Role of biofilms in environmental protection
		15.3.1 Bioremediation
		15.3.2 Heavy metal remediation
		15.3.3 Remediation of hydrocarbons
		15.3.4 Wastewater treatment
		15.3.5 Biofilms in agriculture
		15.3.6 Polyethylene degradation
		15.3.7 Biofilm formation for health
	15.4 Conclusion
	Acknowledgments
	Conflict of interest
	References
16 Antibiotics: action mechanism and modern challenges
	16.1 Introduction
	16.2 History, classification, and mechanism of action of different antibiotics
		16.2.1 History of antibiotics
		16.2.2 Classification of antibiotics
			16.2.2.1 Natural and synthetic antibiotics
				16.2.2.1.1 Natural antibiotics
				16.2.2.1.2 Synthetic antibiotics
			16.2.2.2 Bactericidal and bacteriostatic antibiotics
				16.2.2.2.1 Bactericidal antibiotics
				16.2.2.2.2 Bacteriostatic antibiotics
			16.2.2.3 Aminoglycosides and tetracyclines, β-lactams, sulfa drugs, and quinolones
				16.2.2.3.1 Aminoglycosides and tetracyclines
				16.2.2.3.2 β-Lactams
				16.2.2.3.3 Sulfa drugs
				16.2.2.3.4 Quinolones
		16.2.3 Antibiotics in the environment: modern challenges and future perspectives
		16.2.4 Discussion
	References
17 Drug resistance in pathogenic species of Candida
	17.1 Introduction
	17.2 Epidemiology
	17.3 Overview of molecular mechanisms of drug resistance
		17.3.1 ERG genes
		17.3.2 ATP-binding cassette
		17.3.3 FKS genes
	17.4 Factors facilitating antifungal drug resistance
	17.5 Conclusion and future prospects
	Acknowledgments
	References
Index
Back Cover




نظرات کاربران