دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Satish Chandra Pandey, Veni Pande, Diksha Sati, Mukesh Samant سری: Developments in Applied Microbiology and Biotechnology ISBN (شابک) : 0323916430, 9780323916431 ناشر: Academic Press سال نشر: 2023 تعداد صفحات: 338 [340] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Advanced Microbial Techniques in Agriculture, Environment, and Health Management: Impact and Disposal Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های میکروبی پیشرفته در کشاورزی، محیط زیست و مدیریت بهداشت: تاثیر و استراتژی های دفع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیک های پیشرفته میکروبی در کشاورزی، محیط زیست و مدیریت بهداشت: استراتژی های تاثیر و دفع دیدگاه های فعلی در زمینه های کشاورزی، محیط زیست و بهداشت را ارائه می دهد. این مرجع مهم، پیشرفتهای اخیر در فناوری میکروبی کاربردی را ارائه میکند و آن را به صورت جامع تدوین کرده و فناوری میکروبی کاربردی را از شرایط آزمایشگاهی به سطح مزرعه منتقل میکند. در 20 فصل، این کتاب بر روی مداخلات میکروبی برای تاکتیکهای مدیریت زیست محیطی همهگیر و مقرونبهصرفه تمرکز میکند، در حالی که خدمات میکروبی تجمعی درگیر در ارتقاء کشاورزی، محیطزیست و سلامت را به هم مرتبط میکند. علاوه بر این، این کتاب اطلاعات دقیقی در مورد مسائل زیست محیطی نوظهور ارائه می دهد و راه هایی برای کنترل پیامدهای آنها با استفاده از رویکردهای مختلف برای درمان پیشنهاد می کند. ارائه اطلاعات مفهومی و پیشرفتهای اخیر در خدمات میکروبی مرتبط با افزایش پایداری زیستمحیطی. راهحلهای بالقوه برای مشکلات مختلفی مانند بهرهوری پایین کشاورزی، انتشار آلایندههای مضر از منابع طبیعی و انسانی، و توسعه بیماریها در گیاهان و انسانها ارائه میدهد. دانش عمیق در مورد مشارکت میکروبی به عنوان تلقیح زیستی، منابع آنزیمی و ضد میکروبی
Advanced Microbial Techniques in Agriculture, Environment and Health Management: Impact and Disposal Strategies provides current perspectives on the fields of agriculture, the environment and health. This important reference presents recent advancements in applied microbial technology, compiling it in a comprehensive manner and transferring applied microbial technology from laboratory conditions to field level. In 20 chapters, the book focuses on microbial interventions for all-inclusive, cost-effective environmental management tactics while also linking the cumulative microbial services involved in the up-gradation of agriculture, environment and health. In addition, the book offers detailed information on emerging environmental issues and proposes ways of controlling their consequences using different approaches to treatment. Provides conceptual information and recent advances in microbial services involved in enhancing environmental sustainability Offers potential solutions for a variety of problems like low agricultural productivity, emission of harmful contaminants from both natural and anthropogenic sources, and disease development in plants and humans Contains applied, in-depth knowledge on microbial contributions as bio-inoculants, enzymatic sources and antimicrobials
Front Cover Advanced Microbial Techniques in Agriculture, Environment, and Health Management Copyright Page Contents List of contributors 1 Beneficial microbes for sustainable agroecosystem 1.1 Introduction 1.2 Beneficial microbes in agriculture 1.3 Beneficial microbes: a key element for sustainable agricultural system 1.4 Rhizosphere: a hot spot of beneficial microbes 1.4.1 Beneficial microbes 1.4.1.1 Plant growth promoting bacteria 1.4.1.2 Mycorrhizal fungi 1.4.1.3 Actinomycetes 1.4.2 Nutrient management by beneficial microbes 1.4.2.1 Role of beneficial microbes in phosphorus solubilization 1.4.2.2 Role of beneficial microbes in potassium solubilization and mobilization 1.4.3 Role of beneficial microbes in production of plant growth regulators 1.4.4 Beneficial microorganisms as biofertilizers and biopesticides 1.4.5 Role of beneficial microbes in abiotic stress 1.4.6 Role of beneficial microbes as a biocontrol agent 1.5 Conclusion References 2 Strategies and implications of plant growth promoting rhizobacteria in sustainable agriculture 2.1 Introduction 2.2 Plant growth promoting rhizobacteria and plant interaction 2.3 Plant growth promoting rhizobacteria: mechanisms of action 2.3.1 Biological nitrogen fixation 2.3.2 Phosphorous solubilization 2.3.3 Zinc solubilizing bacteria 2.3.4 ACC deaminase production 2.3.5 Phytohormone production 2.3.6 Siderophore production for iron acquisition 2.3.7 Antibiotic production 2.3.8 Biosurfactant production 2.4 Plant growth promoting rhizobacteria in abiotic stress remediation 2.5 Plant growth promoting rhizobacteria in biotic stress remediation 2.6 Induced systemic resistance 2.7 Commercialization of plant growth promoting rhizobacteria-based bioproducts 2.8 Conclusion and future prospects Acknowledgment References 3 Role of quorum sensing in plant–microbe interactions 3.1 Introduction 3.2 Quorum sensing in rhizobacterial community colonization 3.3 Quorum sensing and plant disease protection 3.4 Quorum sensing in nitrogen-fixing rhizobia 3.5 Quorum sensing in rhizosphere engineering 3.6 Conclusion References 4 Microbial services for mitigation of biotic and abiotic stresses in plants 4.1 Introduction 4.2 Different types of stresses 4.2.1 Abiotic stress 4.2.2 Biotic stress 4.3 Microbial resources for alleviation of stress in plant 4.3.1 Bacterial-assisted drought mitigation in plants 4.3.2 Bacterial-assisted salinity mitigation in plant 4.3.3 Bacterial-assisted heavy metal stress mitigation 4.3.4 Bacterial-assisted cold stress mitigation 4.3.5 Bacterial-assisted biotic stress mitigation 4.4 Microbial effects on crop productivity under stress conditions 4.5 Agricultural application of stress-tolerant microorganisms 4.6 Conclusion References 5 Prospects of biotechnology for productive and sustainable agro-environmental growth 5.1 Introduction 5.2 Genetic engineering and sustainable agriculture 5.3 Role of microorganisms in agriculture 5.3.1 Biofertilizers in agroecosystem 5.3.2 Biopesticides, biofungicides, and bioinsecticides in agroecosystem 5.3.3 Plant–microbial interaction: mycorrhiza and plant growth-promoting rhizobacteria 5.4 Nanotechnology in agriculture 5.4.1 Nanofertilizers 5.4.2 Nanopesticides 5.4.3 Nanotechnology for improved soil quality 5.4.4 Nanotechnology in food industry 5.5 Conclusion and future prospects References 6 Biofertilizers: a microbial-assisted strategy to improve plant growth and soil health 6.1 Introduction 6.2 What is a biofertilizer? 6.3 Need for biofertilizers at higher altitudes 6.4 Preparation of biofertilizer: steps and standards 6.5 Types of bioformulations 6.5.1 Solid bioformulation 6.5.1.1 Dried powder (dust) 6.5.1.2 Granules 6.5.1.3 Wettable powders 6.5.1.4 Wettable/water-dispersible granules 6.5.2 Liquid bioformulation 6.5.3 Encapsulated bioformulations 6.6 Types of biofertilizers 6.6.1 Nitrogen-fixing biofertilizers 6.6.1.1 Symbiotic nitrogen-fixing biofertilizers 6.6.1.2 Free-living nitrogen-fixing biofertilizers 6.6.1.3 Associative symbiotic nitrogen-fixing biofertilizers 6.6.2 Phosphate solubilizing biofertilizers 6.6.3 Phosphate-mobilizing biofertilizers 6.6.4 Potassium-solubilizing biofertilizers 6.6.5 Iron-solubilizing biofertilizers 6.6.6 Zinc-solubilizing biofertilizer 6.7 Mode of biofertilizer application 6.7.1 Foliar application 6.7.2 Seed treatment 6.7.3 Soil treatment 6.8 Challenges of biofertilizer commercialization 6.8.1 Biological constraints 6.8.2 Technical constraints 6.8.3 Regulatory constraints 6.8.4 Marketing constraints 6.8.5 Field-level constraints 6.8.6 Biofertilizer carrier 6.9 Conclusion Acknowledgment References 7 Biocontrol: an efficient solution for sustainable agriculture and food production 7.1 Introduction 7.2 Biological control: types 7.2.1 Types of biocontrol strategies 7.2.1.1 Classical biological control 7.2.1.2 Augmentation control 7.2.1.3 Seasonal biological control: type of augmentation 7.2.1.4 Conservative biological control 7.3 Biocontrol and biofertilization with microorganisms for sustainable agriculture 7.3.1 Plant growth-promoting rhizobacteria 7.3.2 Rhizobia 7.3.3 Endophytic fungi 7.3.4 Mycorrhizal fungi 7.3.5 Rhizospheric fungi 7.3.6 Bacterial endosymbionts and endophytes 7.3.7 Microbes of various environments 7.3.8 Viruses: biological control agents 7.4 Examples of biocontrol agents used in agriculture 7.4.1 Biocontrol of sugarcane Pyrilla 7.4.2 Biocontrol of cotton bollworm 7.4.3 Biocontrol of water hyacinth 7.4.4 Biocontrol of woolly apple aphid 7.4.5 Biocontrol of white woolly aphid 7.5 Conclusion References 8 Impact of environmental pollutants on agriculture and food system 8.1 Introduction 8.1.1 Metals and metalloids 8.1.2 Electronic waste 8.1.3 Plastics 8.1.4 Nanoparticles 8.1.5 Radioactivity/nuclear reactors 8.1.6 Pharmaceuticals and personal care products 8.1.7 Sewage wastewater and sludge 8.1.8 Particulate matter 8.1.9 Dyes from textile industries 8.2 Remediation for removal of chemical contaminants 8.3 Conclusion References 9 Hazardous waste: impact and disposal strategies 9.1 Introduction 9.2 Classification of hazardous wastes 9.3 Impact of hazardous waste 9.3.1 Environment 9.3.2 Humans 9.3.2.1 Health consequences of exposure to hazardous chemicals 9.4 Methods for identification and monitoring of hazardous waste 9.4.1 Identification of hazardous waste: Indian scenario 9.5 Strategies for hazardous waste management 9.5.1 Physical strategies 9.5.1.1 Incineration 9.5.1.2 Landfilling 9.5.1.3 Solidification/stabilization 9.5.1.4 Deep-well injection 9.5.1.5 Encapsulation 9.5.1.6 Inertization 9.5.1.7 Autoclaving 9.5.1.8 Microwave irradiation 9.5.2 Chemical strategies 9.5.2.1 Chemical disinfection 9.5.2.2 Chemical degradation 9.5.3 Biological strategies 9.5.3.1 Land treatment 9.5.3.2 Enzymatic system 9.5.3.3 Bioremediation 9.5.3.3.1 Aerobic methods 9.5.3.3.2 Anaerobic methods 9.5.4 Modern hybrid technology 9.6 Impact of mismanagement: illegal trafficking and poor transportation facility 9.6.1 Hazardous waste transportation 9.6.2 Illegal trafficking 9.7 Conclusion References 10 Bioremediation of heavy metals by soil-dwelling microbes: an environment survival approach 10.1 Introduction 10.2 Sources of heavy metals 10.2.1 Industrial source of heavy metals 10.2.2 Natural source of heavy metals 10.2.3 Agricultural source of heavy metal 10.2.4 Domestic sources 10.2.5 Other sources of heavy metal effluence 10.3 Consequences of heavy metal toxicity on human and plant health 10.4 Techniques for heavy metal removal 10.4.1 Physical methods 10.4.2 Chemical remediation 10.4.3 Phytoremediation 10.4.3.1 Phytoextraction 10.4.3.2 Phytovolatilization 10.4.3.3 Phytostabilization 10.4.3.4 Rhizofiltration 10.4.3.5 Rhizodegradation 10.4.4 Microbial remediation of heavy metals 10.4.4.1 Remediation by adsorption 10.4.4.2 Remediation by biosorption 10.4.4.3 Remediation by bioleaching 10.4.4.4 Remediation by redox state change 10.5 Genes involved in determining resistance against different heavy metals in bacteria 10.5.1 Resistance to antimony and arsenic 10.5.2 Resistance to mercury 10.5.3 Resistance to nickel and cobalt 10.5.4 Resistance to copper 10.5.5 Resistance to cadmium 10.5.6 Resistance to zinc 10.6 Factors affecting microbial remediation 10.6.1 pH 10.6.2 Ambient temperature 10.6.3 Substrate species 10.6.4 Substrate concentration 10.6.5 Condition of soil milieu 10.6.6 Bioavailability of pollutants and biosurfactants 10.7 Conclusion and future prospects References 11 Omics approaches to pesticide biodegradation for sustainable environment 11.1 Introduction 11.2 Biodegradation 11.3 Parameters affecting biodegradation of pesticides 11.3.1 Pesticide structure 11.3.2 Pesticide concentration 11.3.3 Pesticide solubility 11.3.4 Soil types 11.3.5 Soil moisture 11.3.6 Temperature 11.3.7 Soil pH 11.3.8 Soil organic matter 11.3.9 Soil microbial biomass 11.4 Proteomics of pesticide biodegradation 11.5 Molecular basis of pesticide degradation 11.6 Metagenomic analysis 11.6.1 Cultivation-independent methods 11.7 Conclusion References 12 Microbial consortia and their application for environmental sustainability 12.1 Introduction 12.2 Microbial bioremediation of pollutants 12.2.1 Potential microbial candidates 12.2.1.1 Bacteria 12.2.1.1.1 Aerobic 12.2.1.1.2 Anaerobic 12.2.1.1.3 Methanotrophs 12.2.1.2 Ligninolytic fungi 12.2.1.3 Algae 12.2.1.4 Animals 12.2.1.5 Plants 12.2.2 Bioremediation: potential and sustainable process for environmental cleanup 12.2.2.1 Immobilization 12.2.2.2 Mobilization 12.2.3 Mechanisms involved in bioremediation 12.2.3.1 Adsorption 12.2.3.2 Biosorption 12.2.3.3 Molecular approach: genetically engineered microorganisms 12.2.4 Enzymes for bioremediation 12.2.4.1 Microbial oxidoreductases 12.2.4.1.1 Microbial oxygenases 12.2.4.1.2 Microbial laccases 12.2.4.1.3 Microbial peroxidases 12.2.4.2 Microbial hydrolytic enzymes 12.2.4.2.1 Microbial lipases 12.2.4.2.2 Microbial cellulases 12.2.4.2.3 Microbial proteases 12.2.5 Major bioremediation strategies/techniques and their types 12.2.5.1 Bioremediation 12.2.5.1.1 In situ 12.2.5.1.2 Ex situ 12.3 Rhizospheric soil-plant-microbe interactions 12.3.1 Plant growth-promoting rhizobacteria 12.3.1.1 Direct mechanisms 12.3.1.2 Indirect mechanisms- 12.3.2 Nitrogen-fixing microbes 12.3.3 Nutrient-solubilizing microbes 12.3.4 Nutrient-mobilizing microbes 12.3.4.1 Role of mycorrhizal association 12.3.5 Arbuscular mycorrhizal fungi 12.4 Conclusion References 13 Recent advances in in silico approaches for removal of environmental pollutants 13.1 Introduction 13.2 In silico approaches 13.3 In silico approach for toxicity analysis of pollutants 13.4 Molecular docking approach for bioremediation 13.5 Molecular dynamics simulation approach for bioremediation 13.6 Biodegradation pathway prediction 13.7 Metabolic pathway simulation of biodegradation 13.8 Bioremediation using proteomics 13.9 Bioremediation using genomics 13.10 Systems biology methods 13.11 Removal of environmental pollutants through artificial intelligence 13.12 Conclusion References 14 Significance of nanoscale in macro-scale in various sectors such as agriculture, environment, and human health 14.1 Introduction 14.2 Nanomaterials in agriculture sector 14.2.1 Crop enhancement: use of nanofertilizers 14.2.2 Crop protection 14.2.3 Crop improvement 14.2.4 Fate of nanomaterial in soil 14.3 Nanomaterial in environmental sector 14.3.1 Wastewater and water remediation 14.3.1.1 Nanoadsorbents 14.3.1.2 Nanomembranes 14.3.1.3 Nanocatalysts 14.3.2 Remediation 14.3.2.1 Metallic nanoparticles 14.3.2.2 Semiconducting nanoparticles and dendrimers 14.3.2.3 Carbon capture 14.3.3 Sources of energy 14.3.3.1 Solar cells 14.3.3.2 Fuel cells 14.3.4 Environmental sensing 14.3.4.1 Gas sensors 14.3.4.2 Heavy metal ion sensors 14.3.4.3 Optical sensing 14.3.4.4 Electrochemical sensing 14.4 Negative aspects of nanotechnology 14.5 Conclusion References 15 Recent advances in biofilm formation and their role in environmental protection 15.1 Introduction 15.2 Biofilm formation 15.2.1 Events of signaling in biofilm formation 15.3 Role of biofilms in environmental protection 15.3.1 Bioremediation 15.3.2 Heavy metal remediation 15.3.3 Remediation of hydrocarbons 15.3.4 Wastewater treatment 15.3.5 Biofilms in agriculture 15.3.6 Polyethylene degradation 15.3.7 Biofilm formation for health 15.4 Conclusion Acknowledgments Conflict of interest References 16 Antibiotics: action mechanism and modern challenges 16.1 Introduction 16.2 History, classification, and mechanism of action of different antibiotics 16.2.1 History of antibiotics 16.2.2 Classification of antibiotics 16.2.2.1 Natural and synthetic antibiotics 16.2.2.1.1 Natural antibiotics 16.2.2.1.2 Synthetic antibiotics 16.2.2.2 Bactericidal and bacteriostatic antibiotics 16.2.2.2.1 Bactericidal antibiotics 16.2.2.2.2 Bacteriostatic antibiotics 16.2.2.3 Aminoglycosides and tetracyclines, β-lactams, sulfa drugs, and quinolones 16.2.2.3.1 Aminoglycosides and tetracyclines 16.2.2.3.2 β-Lactams 16.2.2.3.3 Sulfa drugs 16.2.2.3.4 Quinolones 16.2.3 Antibiotics in the environment: modern challenges and future perspectives 16.2.4 Discussion References 17 Drug resistance in pathogenic species of Candida 17.1 Introduction 17.2 Epidemiology 17.3 Overview of molecular mechanisms of drug resistance 17.3.1 ERG genes 17.3.2 ATP-binding cassette 17.3.3 FKS genes 17.4 Factors facilitating antifungal drug resistance 17.5 Conclusion and future prospects Acknowledgments References Index Back Cover