دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kunal Pal, Samit Ari, Arindam Bit, Saugat Bhattacharyya سری: ISBN (شابک) : 0323859550, 9780323859554 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 418 [419] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 Mb
در صورت تبدیل فایل کتاب Advanced Methods in Biomedical Signal Processing and Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های پیشرفته در پردازش و تجزیه و تحلیل سیگنال های زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای پیشرفته در پردازش و تجزیه و تحلیل سیگنالهای زیست پزشکی روشهای پیشرفتهای را در پردازش سیگنالهای زیستی ارائه میکند، از جمله تجزیه و تحلیل کمیت عود، تغییرپذیری ضربان قلب، تجزیه و تحلیل سیگنالهای سری زمانی RRI، مفصل تحلیلهای فرکانس زمانی، تبدیل موجک و تجزیه بستههای موجک، تجزیه حالت تجربی، مدلسازی سیگنالهای زیستی، تبدیل گابور، تجزیه حالت تجربی. این کتاب همچنین درک درستی از روشهای استخراج ویژگی، رتبهبندی ویژگی، و روشهای انتخاب ویژگی ارائه میدهد، در حالی که نحوه استفاده از هوش مصنوعی و یادگیری ماشین را در تکنیکهای سیگنال زیستی نشان میدهد.
Advanced Methods in Biomedical Signal Processing and Analysis presents state-of-the-art methods in biosignal processing, including recurrence quantification analysis, heart rate variability, analysis of the RRI time-series signals, joint time-frequency analyses, wavelet transforms and wavelet packet decomposition, empirical mode decomposition, modeling of biosignals, Gabor Transform, empirical mode decomposition. The book also gives an understanding of feature extraction, feature ranking, and feature selection methods, while also demonstrating how to apply artificial intelligence and machine learning to biosignal techniques.
Front Matter Copyright Contributors Feature engineering methods Machine learning projects development standards and feature engineering Exploratory data analysis Types of input data Data preparation and preprocessing Missing values treatment Encoding the categorical variables Investigation of the data distribution Binning Identifying and treatment of outliers Variable transformation Min-max scaling Logarithm transformation Centering and scaling Box-Cox normalization Data vs features Relations between data and features Feature extraction methods Linear vs nonlinear Multivariate vs univariate Curse of dimensionality Data sparsity Distance concentration Avoiding the curse of dimensionality Feature reduction Feature selection Unsupervised feature selection Supervised feature selection Exhaustive search Filter methods Wrapper methods Embedded methods Feature dimensionality reduction Principal component analysis Independent component analysis Nonnegative matrix factorization Self-organizing maps Autoencoders Concluding remarks References Heart rate variability Introduction Effects of blood pressure on HRV Effect of myocardial infarction on HRV Relation between HRV and cardiac arrhythmia Relation between HRV, age, and gender Effects of drugs, alcohol, and smoking on HRV parameters Effects of menstrual cycle on HRV parameters Literature review Analyses of time-domain parameters Analysis of frequency-domain HRV parameters Classification and prediction of ECG signals Results Statistical analysis Machine learning results Variation of HRV during the menstrual cycle Discussion Conclusion Acknowledgments References Understanding the suitability of parametric modeling techniques in detecting the changes in the HRV signals ac ... Introduction Literature review on cannabis and its legal status Methods Acquisition of the ECG signals and extraction of the HRV signals Parametric modeling of the HRV signals Statistical analysis Development of ML classifiers Selection of input parameters Machine learning techniques Results AR modeling of the HRV signals MA modeling of the HRV signals ARMA modeling of the HRV signals Development of ML-based classifiers using the coefficients of all the parametric models of the HRV signals Discussion Conclusion Conflict of interest statement References Patient-specific ECG beat classification using EMD and deep learning-based technique Introduction Database Proposed methodology Preprocessing Noise removal using EMD technique Deep learning-based architecture for ECG beat classification Experimental results Performance metrics Selection of hyperparameters for the proposed model Performance of the proposed system for ECG beat detection Comparison of the proposed framework with state-of-the-art techniques Conclusions References Empirical wavelet transform and deep learning-based technique for ECG beat classification Introduction Related works and motivation Database Proposed methodology Preprocessing Deep learning architecture for ECG beat classification Experimental results Preprocessing of ECG beats using EWT technique Metrics utilized to assess the performance of the EWT-based deep learning technique Parameters optimization of the deep learning-based model Performance of the proposed EWT-based deep learning classifier Performance comparison of the proposed EWT-based deep learning technique with state-of-the-art techniques Conclusions References Development of an internet of things (IoT)-based pill monitoring device for geriatric patients Introduction Literature review Materials and methods Materials and softwares Methods Designing the medication monitoring system Designing the hardware component Development of the software for medication monitoring Results and discussions Developing the medication monitoring system Testing the medication monitoring system Discussions Conclusion Conflict of interest Appendix References Chapter 7: Biomedical robotics 1. Introduction 2. Challenges and opportunities References Combating COVID-19 by employing machine learning predictions and projections Introduction COVID-19: The 2020 pandemic Origin and classification The genome Epidemiology Source and spectrum of infection Disease etiology Pathogenesis Treatments What is machine learning (ML)? What does ML do? What is data in ML? Framework of ML-based prediction and projections Demystifying machine learning Machine learning: The process Types of machine learning Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning Key application of machine learning with illustrative examples: Fighting COVID-19 Pandemic preparedness Risk assessment and priority testing Digital contact tracing Integrated diagnosis Assisting drug discovery process Aiding in vaccine development Concerns Final thoughts Takeaway points References Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network Introduction Deep learning methods Some discussion on CNNs and RNNs Hybrid models Attention mechanism in deep learning Graph neural network Transition from basic models to graph-based models GNN: Convolutional, attention, and message passing flavors Dynamic GNNs Applications of GNNs on neural data Discussion References Improved extraction of the extreme thermal regions of breast IR images Introduction Methodology Graph theory Experimental results and discussion Case 1: Breast cancer Case 2: Breast cancer Case 3: Mammary cysts Case 4: Mammary cysts Case 5: Benign tumor Case 6: Benign tumors (multiple) Case 7: Benign tumors Case 8: Benign tumors Case 9: Advanced cancer Conclusion Acknowledgments References New metrics to assess the subtle changes of the heart's electromagnetic field Introduction Information technology of magnetocardiography: Basis, technical means, diagnostic metrics Definition and short essay on the history of magnetocardiography Technical means: Magnetometric complex The consecutive steps, electrophysiological basis, and algorithms of the MCG-signal analysis Inverse problem statement Algorithm for solving the inverse problem of magnetostatics for a 2D field source Consideration of the spatial configuration of the magnetic flux transformer: Axial and planar gradiometers Application of the algorithm for the analysis of the magnetocardiosignal Metrics and information technologies for the analysis of magnetocardiographic data based on two-dimensional visualizat ... Clinical approbation of metrics of analysis of magnetocardiographic data based on two-dimensional visualization of t ... Metrics and information technologies of analysis of magnetocardiographic data based on three-dimensional visualizati ... New metrics and information technologies based on computerized electrocardiography Principles of the electrocardiogram-scaling technique for detecting subtle changes Clinical approbation of new information technologies and metrics of computerized electrocardiography New metrics and information technologies based on heart rate variability analysis Heart rate variability and pain analysis Conclusions Acknowledgments References Further reading The role of optimal and modified lead systems in electrocardiogram Introduction Lead theory BSPM Modifications in standard ECG lead system Modified and optimal lead systems Bipolar monitoring leads Modified chest leads Minimal monitoring leads Mason-Likar lead system Lund lead system Derived 12-lead systems Lewis lead Modified Lewis lead EASI lead system Fontaine bipolar leads Modified limb lead system Monitoring neonatal and pediatric ECG P-lead system ECG signal processing Data acquisition Denoising techniques Feature extraction techniques Signal processing techniques Classification techniques Advantages of optimal and modified leads in ECG signal processing Conclusion Acknowledgments References Adaptive rate EEG processing and machine learning-based efficient recognition of epilepsy Introduction The electroencephalogram (EEG) for healthcare Signal acquisition, preprocessing, and features extraction Dataset Reconstruction Adaptive rate acquisition Adaptive rate segmentation Adaptive rate interpolation Adaptive rate filtering Feature extraction method Machine learning methods K-nearest neighbors (K-NN) Artificial neural network (ANN) Support vector machines (SVM) The performance evaluation measures Samples ratio Compression ratio Accuracy (ACC) Specificity (SP) F-measure (F1) Kappa index (kappa) Results Discussion and conclusion Acknowledgments References Development of a novel low-cost multimodal microscope for food and biological applications Introduction Literature review Materials and methods Material and software Development of the microscope The sample magnification and imaging assembly (SMIA) The sample illuminator assembly (SIA) The filter holder assembly (FHA) The focus adjustment assembly (FAA) The sample stage movement assembly (SSMA) Development of the optical filter set of the microscope Development of the software Testing of the developed microscope Microbes and milk protein Melted chocolate Wastewater cultured microbes Oleogels Results and discussion Development of the microscope Testing of the developed microscope Conclusion and future scope Acknowledgments References Index A B C D E F G H I J K L M N O P R S T U V W X Y Z