ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Methods and Deep Learning in Computer Vision (Computer Vision and Pattern Recognition)

دانلود کتاب روش های پیشرفته و یادگیری عمیق در بینایی کامپیوتر (بینایی کامپیوتری و تشخیص الگو)

Advanced Methods and Deep Learning in Computer Vision (Computer Vision and Pattern Recognition)

مشخصات کتاب

Advanced Methods and Deep Learning in Computer Vision (Computer Vision and Pattern Recognition)

ویرایش: [1 ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0128221097, 9780128221099 
ناشر: Academic Press 
سال نشر: 2021 
تعداد صفحات: 582
[584] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 26 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Advanced Methods and Deep Learning in Computer Vision (Computer Vision and Pattern Recognition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روش های پیشرفته و یادگیری عمیق در بینایی کامپیوتر (بینایی کامپیوتری و تشخیص الگو) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روش های پیشرفته و یادگیری عمیق در بینایی کامپیوتر (بینایی کامپیوتری و تشخیص الگو)



روش‌های پیشرفته و یادگیری عمیق در بینایی کامپیوتری روش‌های بینایی کامپیوتری پیشرفته را ارائه می‌دهد، با تاکید بر تکنیک‌های یادگیری عمیق ماشینی و عمیق که در طول 5 تا 10 سال گذشته ظهور کرده‌اند. این کتاب توضیحات روشنی از اصول و الگوریتم های پشتیبانی شده با برنامه ها ارائه می دهد. موضوعات تحت پوشش عبارتند از یادگیری ماشینی، شبکه های یادگیری عمیق، شبکه های متخاصم مولد، یادگیری تقویتی عمیق، یادگیری خود نظارتی، استخراج ویژگی های قوی، تشخیص اشیا، تقسیم بندی معنایی، توصیف زبانی تصاویر، جستجوی بصری، ردیابی بصری، بازیابی شکل سه بعدی، تصویر. Inpainting، تازگی و تشخیص ناهنجاری.

این کتاب یادگیری آسانی را برای محققان و دست اندرکاران روش های پیشرفته بینایی کامپیوتری فراهم می کند، اما همچنین به عنوان کتاب درسی برای دوره دوم بینایی کامپیوتر و یادگیری عمیق برای دانشجویان پیشرفته مناسب است. و دانشجویان تحصیلات تکمیلی.


توضیحاتی درمورد کتاب به خارجی

Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection.

This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students.



فهرست مطالب

Front Cover
Advanced Methods and Deep Learning in Computer Vision
Copyright
Contents
List of contributors
About the editors
Preface
1 The dramatically changing face of computer vision
	1.1 Introduction – computer vision and its origins
	1.2 Part A – Understanding low-level image processing operators
		1.2.1 The basics of edge detection
		1.2.2 The Canny operator
		1.2.3 Line segment detection
		1.2.4 Optimizing detection sensitivity
		1.2.5 Dealing with variations in the background intensity
		1.2.6 A theory combining the matched filter and zero-mean constructs
		1.2.7 Mask design—other considerations
		1.2.8 Corner detection
		1.2.9 The Harris `interest point' operator
	1.3 Part B – 2-D object location and recognition
		1.3.1 The centroidal profile approach to shape analysis
		1.3.2 Hough-based schemes for object detection
		1.3.3 Application of the Hough transform to line detection
		1.3.4 Using RANSAC for line detection
		1.3.5 A graph-theoretic approach to object location
		1.3.6 Using the generalized Hough transform (GHT) to save computation
		1.3.7 Part-based approaches
	1.4 Part C – 3-D object location and the importance of invariance
		1.4.1 Introduction to 3-D vision
		1.4.2 Pose ambiguities under perspective projection
		1.4.3 Invariants as an aid to 3-D recognition
		1.4.4 Cross ratios: the `ratio of ratios' concept
		1.4.5 Invariants for noncollinear points
		1.4.6 Vanishing point detection
		1.4.7 More on vanishing points
		1.4.8 Summary: the value of invariants
		1.4.9 Image transformations for camera calibration
		1.4.10 Camera calibration
		1.4.11 Intrinsic and extrinsic parameters
		1.4.12 Multiple view vision
		1.4.13 Generalized epipolar geometry
		1.4.14 The essential matrix
		1.4.15 The fundamental matrix
		1.4.16 Properties of the essential and fundamental matrices
		1.4.17 Estimating the fundamental matrix
		1.4.18 Improved methods of triangulation
		1.4.19 The achievements and limitations of multiple view vision
	1.5 Part D – Tracking moving objects
		1.5.1 Tracking – the basic concept
		1.5.2 Alternatives to background subtraction
	1.6 Part E – Texture analysis
		1.6.1 Introduction
		1.6.2 Basic approaches to texture analysis
		1.6.3 Laws' texture energy approach
		1.6.4 Ade's eigenfilter approach
		1.6.5 Appraisal of the Laws and Ade approaches
		1.6.6 More recent developments
	1.7 Part F – From artificial neural networks to deep learning methods
		1.7.1 Introduction: how ANNs metamorphosed into CNNs
		1.7.2 Parameters for defining CNN architectures
		1.7.3 Krizhevsky et al.'s AlexNet architecture
		1.7.4 Simonyan and Zisserman's VGGNet architecture
		1.7.5 Noh et al.'s DeconvNet architecture
		1.7.6 Badrinarayanan et al.'s SegNet architecture
		1.7.7 Application of deep learning to object tracking
		1.7.8 Application of deep learning to texture classification
		1.7.9 Texture analysis in the world of deep learning
	1.8 Part G – Summary
		Acknowledgments
	References
		Biographies
2 Advanced methods for robust object detection
	2.1 Introduction
	2.2 Preliminaries
	2.3 R-CNN
		2.3.1 System design
		2.3.2 Training
	2.4 SPP-Net
	2.5 Fast R-CNN
		2.5.1 Architecture
		2.5.2 RoI pooling
		2.5.3 Multitask loss
		2.5.4 Finetuning strategy
	2.6 Faster R-CNN
		2.6.1 Architecture
		2.6.2 Region proposal networks
	2.7 Cascade R-CNN
		2.7.1 Architecture
		2.7.2 Cascaded bounding box regression
		2.7.3 Cascaded detection
	2.8 Multiscale feature representation
		2.8.1 MS-CNN
			2.8.1.1 Architecture
		2.8.2 FPN
			2.8.2.1 Architecture
				Bottom-up pathway
				Top-down pathway and lateral connections
	2.9 YOLO
	2.10 SSD
		2.10.1 Architecture
		2.10.2 Training
	2.11 RetinaNet
		2.11.1 Focal loss
	2.12 Detection performances
	2.13 Conclusion
	References
		Biographies
3 Learning with limited supervision
	3.1 Introduction
	3.2 Context-aware active learning
		3.2.1 Active learning
		3.2.2 Context in active learning
		3.2.3 Framework for context-aware active learning
		3.2.4 Applications
	3.3 Weakly supervised event localization
		3.3.1 Network architecture
		3.3.2 k-max multiple instance learning
		3.3.3 Coactivity similarity
		3.3.4 Applications
	3.4 Domain adaptation of semantic segmentation using weak labels
		3.4.1 Weak labels for category classification
		3.4.2 Weak labels for feature alignment
		3.4.3 Network optimization
		3.4.4 Acquiring weak labels
		3.4.5 Applications
		3.4.6 Output space visualization
	3.5 Weakly-supervised reinforcement learning for dynamical tasks
		3.5.1 Learning subgoal prediction
		3.5.2 Supervised pretraining
		3.5.3 Applications
	3.6 Conclusions
		Acknowledgments
	References
		Biographies
4 Efficient methods for deep learning
	4.1 Model compression
		4.1.1 Parameter pruning
		4.1.2 Low-rank factorization
		4.1.3 Quantization
		4.1.4 Knowledge distillation
		4.1.5 Automated model compression
	4.2 Efficient neural network architectures
		4.2.1 Standard convolution layer
		4.2.2 Efficient convolution layers
		4.2.3 Manually designed efficient CNN models
		4.2.4 Neural architecture search
		4.2.5 Hardware-aware neural architecture search
	4.3 Conclusion
	References
5 Deep conditional image generation
	5.1 Introduction
	5.2 Visual pattern learning: a brief review
	5.3 Classical generative models
	5.4 Deep generative models
	5.5 Deep conditional image generation
	5.6 Disentanglement for controllable synthesis
		5.6.1 Disentangle visual content and style
		5.6.2 Disentangle structure and style
		5.6.3 Disentangle identity and attributes
	5.7 Conclusion and discussions
	References
6 Deep face recognition using full and partial face images
	6.1 Introduction
		6.1.1 Deep learning models
			6.1.1.1 The structure of a CNN
			6.1.1.2 Methods of training CNNs
			6.1.1.3 Datasets for deep face recognition experimentation
	6.2 Components of deep face recognition
		6.2.1 An example of a trained CNN model for face recognition
			6.2.1.1 Feature extraction
			6.2.1.2 Feature classification
	6.3 Face recognition using full face images
		6.3.1 Similarity matching using the FaceNet model
	6.4 Deep face recognition using partial face data
	6.5 Specific model training for full and partial faces
		6.5.1 Suggested architecture of the model
		6.5.2 Training phase
	6.6 Discussion and conclusions
	References
		Biographies
7 Unsupervised domain adaptation using shallow and deep representations
	7.1 Introduction
	7.2 Unsupervised domain adaptation using manifolds
		7.2.1 Unsupervised domain adaptation using product manifolds
	7.3 Unsupervised domain adaptation using dictionaries
		7.3.1 Generalized domain adaptive dictionary learning
		7.3.2 Joint hierarchical domain adaptation and feature learning
		7.3.3 Incremental dictionary learning for unsupervised domain adaptation
	7.4 Unsupervised domain adaptation using deep networks
		7.4.1 Discriminative approaches for domain adaptation
		7.4.2 Generative approaches for domain adaptation
	7.5 Summary
	References
		Biographies
8 Domain adaptation and continual learning in semantic segmentation
	8.1 Introduction
		8.1.1 Problem formulation
	8.2 Unsupervised domain adaptation
		8.2.1 Domain adaptation problem formulation
		8.2.2 Adaptation focus
			8.2.2.1 Input level adaptation
			8.2.2.2 Feature level adaptation
			8.2.2.3 Output level adaptation
		8.2.3 Unsupervised domain adaptation techniques
			8.2.3.1 Domain adversarial adaptation
			8.2.3.2 Generative-based adaptation
			8.2.3.3 Classifier discrepancy
			8.2.3.4 Self-supervised learning
				Self-training
				Entropy minimization
			8.2.3.5 Multitasking
	8.3 Continual learning
		8.3.1 Continual learning problem formulation
		8.3.2 Continual learning setups in semantic segmentation
		8.3.3 Incremental learning techniques
			8.3.3.1 Knowledge distillation
			8.3.3.2 Parameter freezing
			8.3.3.3 Geometrical feature-level regularization
			8.3.3.4 New directions
	8.4 Conclusion
		Acknowledgment
	References
		Biographies
9 Visual tracking
	9.1 Introduction
		9.1.1 Problem definition
		9.1.2 Challenges in tracking
		9.1.3 Motivation of the setting
		9.1.4 Historical development
	9.2 Template-based methods
		9.2.1 The basics
		9.2.2 Performance measures
		9.2.3 Normalized cross correlation
		9.2.4 Phase-only matched filter
	9.3 Online-learning-based methods
		9.3.1 The MOSSE filter
		9.3.2 Discriminative correlation filters
		9.3.3 Suitable features for DCFs
		9.3.4 Scale space tracking
		9.3.5 Spatial and temporal weighting
	9.4 Deep learning-based methods
		9.4.1 Deep features in DCFs
		9.4.2 Adaptive deep features
		9.4.3 End-to-end learning DCFs
	9.5 The transition from tracking to segmentation
		9.5.1 Video object segmentation
		9.5.2 A generative VOS method
		9.5.3 A discriminative VOS method
	9.6 Conclusions
		Acknowledgment
	References
		Biographies
10 Long-term deep object tracking
	10.1 Introduction
		10.1.1 Challenges in video object tracking
			10.1.1.1 Visual challenges in tracking
			10.1.1.2 Learning challenges in tracking
			10.1.1.3 Engineering challenges in tracking
	10.2 Short-term visual object tracking
		10.2.1 Shallow trackers
		10.2.2 Deep trackers
			10.2.2.1 Correlation filter-based tracking
			10.2.2.2 Noncorrelation filter-based tracking
	10.3 Long-term visual object tracking
		10.3.1 Long-term model decay
		10.3.2 Target disappearance and reappearance
		10.3.3 Long-term trackers
			10.3.3.1 Offline learning with Siamese trackers
		10.3.4 Representation invariance and equivariance
			10.3.4.1 Invariance in tracking
			10.3.4.2 Equivariance in tracking
			10.3.4.3 Translation equivariance
			10.3.4.4 Rotation equivariance
			10.3.4.5 Scale equivariance
			10.3.4.6 Efficiency of Siamese trackers
			10.3.4.7 Hybrid learning with Siamese trackers
			10.3.4.8 Online learning beyond Siamese trackers
		10.3.5 Datasets and benchmarks
	10.4 Discussion
	References
		Biographies
11 Learning for action-based scene understanding
	11.1 Introduction
	11.2 Affordances of objects
		11.2.1 Why would computer vision be interested in affordances?
		11.2.2 Early affordance work
		11.2.3 Affordance detection, classification, and segmentation
			11.2.3.1 Affordance detection from geometric features
			11.2.3.2 Semantic segmentation, and classification from images
		11.2.4 Affordance in the context of action recognition and robot learning
			11.2.4.1 Action recognition
			11.2.4.2 Affordance learning in robot vision
		11.2.5 Discussion on affordance learning
	11.3 Functional parsing of manipulation actions
		11.3.1 The active interplay between cognition and perception
		11.3.2 Grammars of action
			11.3.2.1 Different implementations of the grammar
			11.3.2.2 Are grammars expressive and parsimonious descriptions?
		11.3.3 Modules for action understanding
			11.3.3.1 Grasping: an essential feature for action understanding
			11.3.3.2 Geometry to robustify
		11.3.4 Discussion on activity understanding
	11.4 Functional scene understanding through deep learning with language and vision
		11.4.1 Attributes in zero-shot learning
		11.4.2 Shared embedding spaces
		11.4.3 Construction of semantic vector spaces
			11.4.3.1 word2vec
		11.4.4 Shared embedding spaces and graphical models
	11.5 Future directions
	11.6 Conclusions
		Acknowledgment
	References
		Biographies
12 Self-supervised temporal event segmentation inspired by cognitive theories
	12.1 Introduction
	12.2 The event segmentation theory from cognitive science
	12.3 Version 1: single-pass temporal segmentation using prediction
		12.3.1 Feature extraction and encoding
		12.3.2 Recurrent prediction for feature forecasting
		12.3.3 Feature reconstruction
		12.3.4 Self-supervised loss function
		12.3.5 Error gating
		12.3.6 Adaptive learning for plasticity
		12.3.7 Results
			12.3.7.1 Datasets
			12.3.7.2 Evaluation metrics
			12.3.7.3 Ablative studies
			12.3.7.4 Quantitative evaluation
				12.3.7.4.1 Improved features for action recognition
			12.3.7.5 Qualitative evaluation
	12.4 Version 2: segmentation using attention-based event models
		12.4.1 Feature extraction
		12.4.2 Attention unit
		12.4.3 Motion weighted loss function
		12.4.4 Results
			12.4.4.1 Dataset
			12.4.4.2 Evaluation metrics
				12.4.4.2.1 Frame level
				12.4.4.2.2 Activity level
			12.4.4.3 Ablative studies
			12.4.4.4 Quantitative evaluation
			12.4.4.5 Qualitative evaluation
	12.5 Version 3: spatio-temporal localization using prediction loss map
		12.5.1 Feature extraction
		12.5.2 Hierarchical prediction stack
		12.5.3 Prediction loss
		12.5.4 Action tubes extraction
		12.5.5 Results
			12.5.5.1 Data
			12.5.5.2 Metrics and baselines
			12.5.5.3 Quantitative evaluation
				12.5.5.3.1 Quality of localization proposals
				12.5.5.3.2 Spatial-temporal action localization
				12.5.5.3.3 Comparison with other LSTM-based approaches
				12.5.5.3.4 Ablative studies
				12.5.5.3.5 Unsupervised egocentric gaze prediction
			12.5.5.4 Qualitative evaluation
	12.6 Other event segmentation approaches in computer vision
		12.6.1 Supervised approaches
		12.6.2 Weakly-supervised approaches
		12.6.3 Unsupervised approaches
		12.6.4 Self-supervised approaches
	12.7 Conclusions
		Acknowledgments
	References
		Biographies
13 Probabilistic anomaly detection methods using learned models from time-series data for multimedia self-aware systems
	13.1 Introduction
	13.2 Base concepts and state of the art
		13.2.1 Generative models
		13.2.2 Dynamic Bayesian Network (DBN) models
		13.2.3 Variational autoencoder
		13.2.4 Types of anomalies and anomaly detection methods
		13.2.5 Anomaly detection in low-dimensional data
		13.2.6 Anomaly detection in high-dimensional data
	13.3 Framework for computing anomaly in self-aware systems
		13.3.1 General framework description
		13.3.2 Generalized dynamic Bayesian network (GDBN) model
		13.3.3 Real-time inference algorithm
		13.3.4 Multimodal abnormality measurements
			13.3.4.1 Discrete level
			13.3.4.2 Continuous level
			13.3.4.3 Observation level
		13.3.5 Use of generalized errors for continual learning
	13.4 Case study results: anomaly detection on multisensory data from a self-aware vehicle
		13.4.1 Case study presentation
		13.4.2 DBN model learning
		13.4.3 Multilevel anomaly detection
			13.4.3.1 Pedestrian avoidance task
			13.4.3.2 U-turn task
			13.4.3.3 Image-level anomalies
			13.4.3.4 Anomaly detection evaluation
		13.4.4 Proprioceptive sensory data anomalies
		13.4.5 Additional results
	13.5 Conclusions
	References
		Biographies
14 Deep plug-and-play and deep unfolding methods for image restoration
	14.1 Introduction
	14.2 Half quadratic splitting (HQS) algorithm
	14.3 Deep plug-and-play image restoration
		14.3.1 Learning deep CNN denoiser prior
			14.3.1.1 Denoising network architecture
		14.3.2 Training details
		14.3.3 Denoising results
			14.3.3.1 Grayscale image denoising
			14.3.3.2 Color image denoising
		14.3.4 HQS algorithm for plug-and-play IR
			14.3.4.1 Half quadratic splitting (HQS) algorithm
			14.3.4.2 General methodology for parameter setting
			14.3.4.3 Periodical geometric self-ensemble
	14.4 Deep unfolding image restoration
		14.4.1 Deep unfolding network
			14.4.1.1 Data module D
			14.4.1.2 Prior module P
			14.4.1.3 Hyper-parameter module H
		14.4.2 End-to-end training
	14.5 Experiments
		14.5.1 Image deblurring
			14.5.1.1 Quantitative and qualitative results
			14.5.1.2 Hand-designed vs. learned hyper-parameters
			14.5.1.3 Intermediate results
		14.5.2 Single image superresolution (SISR)
			14.5.2.1 Quantitative and qualitative comparison
			14.5.2.2 Hand-designed vs. learned hyper-parameters
			14.5.2.3 Intermediate results
	14.6 Discussion and conclusions
		Acknowledgments
	References
		Biographies
15 Visual adversarial attacks and defenses
	15.1 Introduction
	15.2 Problem definition
	15.3 Properties of an adversarial attack
	15.4 Types of perturbations
	15.5 Attack scenarios
		15.5.1 Target models
			15.5.1.1 Models for image-based tasks
			15.5.1.2 Models for video-based tasks
		15.5.2 Datasets and labels
			15.5.2.1 Image datasets
			15.5.2.2 Video datasets
	15.6 Image processing
	15.7 Image classification
		15.7.1 White-box, bounded attacks
		15.7.2 White-box, content-based attacks
		15.7.3 Black-box attacks
	15.8 Semantic segmentation and object detection
	15.9 Object tracking
	15.10 Video classification
	15.11 Defenses against adversarial attacks
		15.11.1 Detection
		15.11.2 Gradient masking
		15.11.3 Model robustness
	15.12 Conclusions
		Acknowledgment
	References
		Biographies
Index
Back Cover




نظرات کاربران