دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Pradip Debnath, Delfim F. M. Torres, Yeol Je Cho سری: ISBN (شابک) : 9781032481517, 9781003388678 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 493 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Advanced Mathematical Analysis and its Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل ریاضی پیشرفته و کاربردهای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیشرفتهای پیشرفته در تجزیه و تحلیل ریاضی را از طریق مشارکتها و بررسیهای جدید و اصلی، با تأکید ویژه بر کاربردها در مهندسی و علوم ریاضی ارائه میکند. خوانندگان این کتاب به حداقل دانش تحلیل واقعی، پیچیده و عملکردی و توپولوژی نیاز دارند.
This book presents state-of-the-art developments in mathematical analysis through new and original contributions and surveys, with a particular emphasis on applications in engineering and mathematical sciences. The readers of this book will require minimum knowledge of real, complex, and functional analysis, and topology.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editor Biographies List of Contributors Chapter 1 Generalized Boyd-Wong-Type Contractions and Related Fixed-FigureResults 1.1 Introduction and Preliminaries 1.2 Generalized Boyd-Wong-Type Fixed-Figure Results 1.3 Conclusion and FutureWork Bibliography Chapter 2 Remarks on the Metatheorem in Ordered Fixed PointTheory 2.1 Introduction 2.2 The 2023 Metatheorem 2.3 The 2022 Metatheorem 2.4 Examples of Metatheorem 2.4.1 Brézis-Browder in 1976 2.4.2 Fierro in 2015 2.4.3 Fierro in 2017 2.4.4 Fierro in 2021 2.5 Comments on Works of Other Authors 2.5.1 Fierro 2.5.2 Boros, Iqbal, and Száz 2.5.3 Boros, Iqbal, and Száz 2.5.4 Iqbal and Száz 2.6 Our Resolution and New Caristi Theorem 2.7 Epilogue Bibliography Chapter 3 On Wardowski Type Results in the Framework of G-Metric Spaces 3.1 Introduction and Preliminaries 3.2 Main Results 3.3 Conclusion Bibliography Chapter 4 Some New Fixed Point Results in Archimedean Type Intuitionistic Fuzzy b-Metric Space 4.1 Introduction 4.2 Some Basic Definitions 4.3 Some Fixed Point Theorems and Related Propositions 4.3.1 Definitions 4.3.2 Theorems 4.4 Application 4.5 Conclusion Bibliography Chapter 5 Fixed Point Theorems for Quasi Upper Semicontinuous Set-valued Mappings in p-Vector and Locally p-Convex Spaces 5.1 Introduction 5.2 Some Basic Notions and Results of p-Vector Spaces 5.3 Fixed Point Theoremsin p-Vector Spaces and Locally p-Convex Spaces Acknowledgment Compliance with Ethical Standards Bibliography Chapter 6 Proinov Es-Contraction Type Unique and Non-Unique Fixed-Point Results on S-Metric Spaces 6.1 Introduction and Motivation 6.2 Main Results 6.2.1 Some Fixed-Point Results 6.2.2 Some Fixed-Figure Results 6.2.2.1 Some Fixed-Disc Results 6.2.2.2 Some Fixed-Ellipse Results 6.2.2.3 Some Fixed-Hyperbola Results 6.2.2.4 Some Fixed-Cassini Curve Results 6.2.2.5 Some Fixed-Apollonius Circle Results Bibliography Chapter 7 A-Admissible Mappings for Four Maps in C*-Algebra-Valued MP-Metric Spaces with an Application 7.1 Introduction 7.2 ηA-Admissible Mapping in C* -Contraction 7.3 ηA-Admissible Mapping in Kannan-Ćirić C*-Contraction 7.4 Example 7.5 Application 7.6 Conclusion Bibliography Chapter 8 Summarized Proofs to Find Common Fixed Points of Prešic Contractions for Four Maps 8.1 Introduction 8.2 Main Results 8.3 Example 8.4 Prešić-Hardy-Rogers Type Fixed Point Results 8.5 Example 8.6 Application 8.7 Conclusion Bibliography Chapter 9 Fixed Point Method: Ulam Stability of Mixed Type Functional Equation in ß-Banach Modules 9.1 Introduction 9.2 Main Results 9.2.1 Stability Results: When f Is Odd 9.2.2 Stability Results: When f Is Even 9.2.3 Stability Results for the Mixed Case 9.3 Conclusion Bibliography Chapter 10 Hybrid Steepest Descent Methods for SolvingVariational Inequalities with Fixed Point Constraints in a Hilbert Space: An Annotated Bibliography 10.1 Introduction 10.1.1 Hybrid Steepest Descent Method (HSDM) 10.1.2 Scope of the Paper and an Apology 10.1.3 Organization of the Paper 10.2 Some Works of Fixed Point Constraints before HSDM 10.3 The Development of HSDM 10.3.1 VIP (F, FixT) 10.3.2 VIP (F, [sup(m)]∩[sub(i=1)] FixT[sub(i)]) 10.4 Conclusions Bibliography Chapter 11 Generalized Kannan Maps with Application to Iterated Function System Abbreviations and Notations Abbreviations Notations 11.1 Introduction 11.2 Generalized Kannan Map 11.3 Application to Iterated Function System 11.4 Conclusion Bibliography Chapter 12 Stability Analysis of Lotka-Volterra Models: Continuous, Discrete and Fractional 12.1 Introduction 12.2 The Modified Lotka–Volterra Model 12.2.1 Model Description 12.2.2 Non-Negativity and Boundedness of the Solutions 12.2.3 Stability Analysis 12.2.4 Graphical Analysis 12.3 Euler’s Numerical Scheme 12.3.1 Model Discretization 12.3.2 Non-Negativity and Boundedness of the Solutions 12.3.3 Stability Analysis 12.3.4 Graphical Analysis 12.4 Mickens’ Numerical Scheme 12.4.1 Model Discretization 12.4.2 Non-Negativity and Boundedness of Solutions 12.4.3 Stability Analysis 12.4.4 Graphical Analysis 12.5 Fractional Calculus (FC) 12.5.1 Preliminaries on FC 12.5.2 Model Description 12.5.3 Existence and Uniqueness 12.5.4 The Boundedness Condition 12.5.5 Stability Analysis 12.5.6 Graphical Analysis 12.6 Conclusions Acknowledgments Bibliography Chapter 13 Existence and Uniqueness of Solutions to Proper Fractional Riemann-Liouville Initial Value Problems on Time Scales 13.1 Introduction 13.2 Preliminaries 13.3 Main Results 13.3.1 Properties of theTime-Scale Fractional Operators 13.3.2 Existence of Solutions to Fractional IVPs on Time Scales 13.4 Acknowledgments Bibliography Chapter 14 Ostrowski Type Inequalities for Conformable Fractional Calculus via a Parameter 14.1 Introduction 14.2 Preliminary Notes 14.3 The Conformable Ostrowski’s Integral Inequality with a Parameter 14.4 Other Bounds for the Conformable Fractional Ostrowski Type Inequalities via a Parameter 14.5 Conclusion Bibliography Chapter 15 The Regional Observability Problem for a Class of Semilinear Time-Fractional Systems With Riemann-Liouville Derivative 15.1 Introduction 15.2 An Overview of the Considered System 15.3 The Reconstruction Approach Algorithm 15.4 Example 15.5 Conclusion Bibliography Chapter 16 Construction of Fractional Extended Nabla Operator and Strong Convergence Analysis 16.1 Introduction 16.2 Preliminaries on Operators in Hölder Spaces 16.3 Fractional Power of Sectorial Operator 16.3.1 Sectorial Property 16.3.2 Fractional Power of the Derivative 16.3.3 Fractional Nabla Operators 16.4 Hölderian Convergence of Fractional Extended Nabla Operator to Fractional Derivative 16.5 Numerical Examples Example16.1 Example16.2 16.6 Conclusion Note Bibliography Chapter 17 Stability Analysis of Fractional Nonlinear Dynamical Systems 17.1 Introduction 17.1.1 Birth of Fractional Calculus 17.1.2 Motivation 17.2 Preliminaries 17.2.1 Laplace Transform 17.3 Stability Analysis of Some Special Nonlinear Fractional Differential Systems 17.3.1 Stability of Fractional Nonlinear System 17.3.2 Stability of Fractional Neutral Differential Equations 17.3.3 Stability of Fractional Langevin Differential Equations 17.3.4 Stability of a Fractional Delay Differential System 17.4 Numerical Examples 17.5 Conclusion Bibliography Chapter 18 On Periodic Dirichlet Series and Special Functions 18.1 Introduction 18.1.1 Notation and Terminology 18.2 Dirichlet Series with Periodic Coefficients 18.3 Parityand Restatement of the Main Theorem 18.4 Algebraic Elucidation of Analytic Expressions Acknowledgment Bibliography Chapter 19 The Lotka-Volterra Dynamical Systemand Its Discretization 19.1 Introduction to the Lotka–Volterra Model 19.2 Discretization by Euler’s Method 19.3 Discretization by Mickens’ Method 19.4 Conclusion Acknowledgments Bibliography Chapter 20 A New Inertial Projection Algorithm for Solving Pseudomonotone Equilibrium Problems 20.1 Introduction 20.2 Preliminaries 20.3 The Algorithm and Convergence Analysis 20.4 Rate of Convergence 20.5 Computational Experiments 20.5.1 Test 1 20.5.2 Test 2 20.6 Conclusion Bibliography Chapter 21 Convergence Analysis of a Relaxed Inertial Alternating Minimization Algorithm with Applications 21.1 Introduction 21.2 Preliminaries 21.3 Relaxed Inertial Three-Block AMA for Solving Three-Block Separable Convex Minimization Problem 21.4 Numerical Experiments 21.4.1 Stable Principal Component Pursuit 21.4.2 Parameters Setting 21.4.3 Results and Discussion 21.5 Conclusions Bibliography Chapter 22 Ball Convergence of Iterative Methods without Derivatives with or without Memory Relying on the Weight Operator Technique 22.1 Introduction 22.2 Ball Convergence 22.3 Numerical Examples 22.4 Conclusion Bibliography Chapter 23 Inner Product Generalized Trapezoid Type Inequalities in Hilbert Spaces 23.1 Introduction 23.2 Main Results 23.3 Inequalities for Operator Monotone Functions 23.4 Some Examples Bibliography Chapter 24 A Note on Degenerate Gamma Random Variables 24.1 Introduction 24.2 Degenerate Gamma Random Variables 24.3 Further Remark Bibliography Chapter 25 Dynamical Systems on Free Random Variables Followed by the Semicircular Law 25.1 Introduction 25.1.1 Motivations 25.1.2 Overview 25.2 Preliminaries 25.3 On |N|-Many Semicircular Elements 25.3.1 A C*-Algebra X Generated by X 25.3.2 Certain Free-Isomorphisms on X[sub(φ)] 25.4 Free Random Variables Followed by the Semicircular Law 25.4.1 The C*-Algebra Λ Generated by the Integer-Shift Group λ 25.4.2 On the Tensor Product Λ X 25.5 A Group-Dynamical System (Z, X[sub(τ)], α) 25.5.1 Dynamicson (Z, X[sub(τ)], α) 25.5.2 The Crossed Product C*-Algebra X[Γ] of Γ 25.5.3 Free-Distributional Data on X[Γ] 25.5.4 Discussion: Z-Dynamics on X[sub(τ)] 25.6 More About Free-Distributional Data on X[Γ] 25.6.1 Free Random Variables of X [Γ] Followed by the Circular Law 25.6.1.1 Free Random Variables Followed by The Circular Law 25.6.2 Free Random Variables of X [Γ] Followed by Free Poisson Distributions Bibliography Index