دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Julian Wang, Donglu Shi, Yehao Song سری: ISBN (شابک) : 3031096940, 9783031096945 ناشر: Springer سال نشر: 2022 تعداد صفحات: 279 [280] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Advanced Materials in Smart Building Skins for Sustainability: From Nano to Macroscale به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد پیشرفته در پوسته های ساختمان های هوشمند برای پایداری: از نانو تا مقیاس کلان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Spectral Selective Solar Harvesting and Energy Generation via Transparent Building Skin 1.1 Introduction 1.1.1 Optical Thermal Insulation via Photothermal Window Coatings 1.1.2 Photovoltaic and Photothermal Dual-Modality Building Skins 1.1.3 3D Solar Harvesting and Photothermal Energy Generation for Building Heating Utilities 1.2 Photothermal Materials for Energy Efficient Building Skin: Synthesis and Property Characterization 1.2.1 Synthesis and Characterization of the Photothermal Materials: Porphyrins and Iron Oxides 1.2.2 Structure and Microstructure of Photothermal Materials 1.2.3 Optical Property Characterization of the Photothermal Thin Films 1.3 Fundamental Studies on the Photonic and Photothermal Mechanisms 1.3.1 Raman Spectroscopy Study 1.3.2 Band Structures of Iron Oxides and Porphyrin Compounds 1.4 Photothermal Thin Films for Energy-Efficient Windows: Optical Thermal Insulation 1.5 Photothermal Properties and Engineering Parameters 1.5.1 Photothermal (PT) Conversion Efficiency, η 1.5.2 Specific Photothermal Coefficient, µ 1.5.3 The Solar Photothermal Efficiency 1.5.4 U-factor, U 1.5.5 Angle Dependence of Solar Harvesting and Thermal Energy Generation 1.6 Multilayer Solar Harvesting and Energy Generation 1.6.1 Photothermal Generator (PTG) 1.6.2 Characterization of the Transparent Photothermal Thin Films 1.6.3 Heating Curves of Multilayer Photothermal Thin Films 1.6.4 Photothermal Energy Generation and Amplification via Multilayers 1.7 PT-PV Dual-Modality Building Skins 1.8 Conclusion References 2 Low Energy Adaptive Biological Material Skins from Nature to Buildings 2.1 Introduction: Nature to Buildings 2.2 Methodologies in Practice: The Active Skin 2.2.1 Wood 2.2.2 Plants and Mosses 2.2.3 Fungi 2.2.4 Biopolymers 2.2.5 Microorganisms 2.3 Outlook: Challenges in Disguise References 3 Dynamic Electro-, Mechanochromic Materials and Structures for Multifunctional Smart Windows 3.1 Introduction 3.2 Multifunctional Smart Windows 3.2.1 Combined Energy Saving and Energy Storage 3.2.2 Combined Energy Saving and Self-powering 3.2.3 Combined Energy Saving and Self-cleaning 3.2.4 Combined Energy Saving and Water Harvesting 3.3 Conclusion and Outlook References 4 Material Programming for Bio-inspired and Bio-based Hygromorphic Building Envelopes 4.1 Introduction 4.2 Understanding and Deploying Wood as Pre-constructed Natural Hygromorphic Smart Material 4.3 Computational Design and 3D Printing as Tools for Constructing Natural Material Systems 4.4 Material Co-design for Bio Based, Hygromorphic Materials and Next-Generation 4D Printed Smart Structures 4.5 Future Perspectives—Learning to Build and Live with Biobased Materials for Sustainable Building Systems References 5 Solar-Thermal Conversion in Envelope Materials for Energy Savings 5.1 Introduction 5.2 Photoactivation Modes 5.3 Photothermal Mechanisms 5.3.1 Plasmonic Localized Heating 5.3.2 Electron/Hole Generation and Relaxation 5.3.3 Thermal Vibration of Molecules 5.4 Timescales of Photothermal Mechanisms 5.5 Performance and Applications of Building Photothermal Materials 5.5.1 Photothermal Materials Applied to Improve Windows’ Thermal Performance 5.5.2 Photothermal Effect in Photo-Thermochromic and Phase Change Materials Used in Buildings Envelopes 5.5.3 Solar-Thermal Conversion in Conventional Passive Solar Designs 5.6 Future Research Directions for Using Photothermal Materials in Buildings Envelopes References 6 Thermally Responsive Building Envelopes from Materials to Engineering 6.1 Responsive Building Envelope: An Evolving Paradigm 6.2 Classification of RBE 6.2.1 Variable Thermal Insulations 6.2.2 Dynamic Shading 6.2.3 Adaptive Ventilation 6.3 Materials for Adaptive Building Envelopes 6.3.1 Humidity Sensitive Materials 6.3.2 Temperature-Responsive Materials 6.3.3 Electrochromic Materials and Passive Lighting Control 6.4 Future Outlooks References 7 Energy Performance Analysis of Kinetic Façades by Climate Zones 7.1 Introduction 7.1.1 Research Questions 7.1.2 Research Scope 7.2 Research Method 7.3 Energy Modeling and Simulation 7.3.1 Energy Modeling 7.3.2 Kinetic Façade Modeling 7.3.3 Kinetic Façade Simulation 7.3.4 Optimized Static Façade 7.4 Simulation Results 7.4.1 Folding Façade Performance 7.4.2 Sliding Façade Performance 7.4.3 Performance Comparison Between Folding and Sliding Façades 7.5 Discussion 7.6 Conclusion References 8 Integration of Solar Technologies in Facades: Performances and Applications for Curtain Walling 8.1 BIPV Technology 8.2 Innovation and New Frontiers of BIPV Technology 8.3 Architectural Integration of Photovoltaics in Façade: The Need of Requirements and Performances as Building Products 8.4 Performances and Requirements 8.5 Quality Control of BIPV Technologies and Components 8.6 Discussion and Conclusion Appendix References 9 Interdependencies Between Photovoltaics and Thermal Microclimate 9.1 Introduction 9.2 Methodology 9.3 Results 9.3.1 Impacts of Photovoltaics on the Thermal Microclimate 9.3.2 Impacts of Thermal Microclimate on Photovoltaic Performance 9.4 Discussion 9.4.1 Main Findings: Impacts of Photovoltaics on the Thermal Microclimate 9.4.2 Main Findings: Impacts of Thermal Microclimate on Photovoltaic Performance 9.5 Conclusion References 10 Material Driven Adaptive Design Model for Environmentally-Responsive Envelopes 10.1 Introduction 10.2 Material Driven Adaptation as a Design System 10.2.1 Decentralized Control 10.2.2 Self-Responsiveness 10.2.3 Self-Sufficiency 10.2.4 Micro–macro Effect 10.2.5 Strength and Flexibility 10.2.6 Free-Form Transformation 10.3 Experiments 10.3.1 Shape Memory Polymers 10.3.2 Testing SMP Surfaces 10.3.3 SMP and EcoFlex Composite 10.3.4 Using SMP with Wood Veneers 10.4 Conclusion References 11 Design Principles, Strategies, and Environmental Interaction of Dynamic Envelopes 11.1 Appearance and Space, Static to Dynamic 11.2 The Value Pursuit of the Dynamic Envelope System 11.2.1 Ecological Value Pursuit: Light, Heat, and Wind Environment 11.2.2 Diversified Spatial Adaptability 11.2.3 Improved Aesthetic Feeling 11.3 The Changing Principle of the Dynamic Envelope System 11.3.1 Variable Construction Depending on the Mechanical Device 11.3.2 Variable Materials Based on Their Own Characteristics 11.3.3 Combination of Variable Construction and Material 11.4 Organizational Mode of a Dynamic Envelope Unit 11.4.1 Unit Form 11.4.2 Scale Division 11.5 Design Strategy of Dynamic Envelope Systems 11.5.1 Rotating Roof Interface Based on the Pursuit of Ventilation and Shading 11.5.2 Folding Facade Interface Based on the Pursuit of Shading 11.5.3 Sliding Atrium Interface Based on the Pursuit of Spatial Adaptability and Ecology 11.6 Conclusion References 12 Aesthetics and Perception: Dynamic Facade Design with Programmable Materials 12.1 Introduction 12.2 Engaging the Senses 12.3 Keeping the Good Stuff in and the Bad Stuff Out 12.4 Project 1_ Phase Change Materials 12.4.1 Rethinking PCM Placement and Operation 12.4.2 Application_ Expanded Wall Section 12.5 Project 2_ Shape Memory Polymers 12.5.1 Shape Memory Effect 12.5.2 Temperature Activated Shape Memory Polymers 12.5.3 Applications and Issues 12.6 Conclusion References 13 Design Research on Climate-Responsive Building Skins from Prototype and Case Study Perspectives 13.1 Climate-Responsive Building Skins 13.2 A Case Study in Continental Climate 13.2.1 Project Description and Climatic Features 13.2.2 Design of the Climate-Responsive Skin 13.2.3 Limitations and Challenges 13.3 Prototype Research 13.3.1 Prototype Extraction 13.3.2 Prototype Experiments 13.3.3 Prototype Integration 13.4 Conclusion References Index