دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Dimitrios A. Giannakoudakis, Lucas Meili, Ioannis Anastopoulos سری: ISBN (شابک) : 0323904858, 9780323904858 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 662 [663] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 40 Mb
در صورت تبدیل فایل کتاب Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد پیشرفته برای اصلاح زیست محیطی پایدار: محیط های خشکی و آبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد پیشرفته برای اصلاح زیست محیطی پایدار: محیط های خشکی و آبی پوشش دقیق و جامعی از مواد جدید و پیشرفته را ارائه می دهد که می تواند برای رسیدگی به نگرانی روزافزون جهانی از آلودگی منابع طبیعی استفاده شود. در آب، هوا و خاک این دانش اساسی در مورد مواد موجود و فرآیندهای تصفیه و همچنین کاربردهایی از جمله اصلاح جذبی و اصلاح کاتالیزوری ارائه می دهد. این کتاب که به وضوح بر اساس نوع مواد سازماندهی شده است، یک ساختار ثابت برای هر فصل، شامل ویژگیهای مواد، ویژگیهای اساسی و مهم فیزیکوشیمیایی برای کاربردهای اصلاح محیطی، مسیرهای سنتز، پیشرفتهای اخیر به عنوان رسانههای اصلاح، و دیدگاههای آینده ارائه میکند.
این کتاب یک بررسی میان رشته ای و عملی از مواد و فرآیندهای موجود برای اصلاح محیطی ارائه می دهد که برای دانشمندان محیط زیست، دانشمندان مواد، شیمیدانان محیط زیست و مهندسان محیط زیست به طور یکسان ارزشمند خواهد بود. /span>
Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments presents detailed, comprehensive coverage of novel and advanced materials that can be applied to address the growing global concern of the pollution of natural resources in waters, the air and soil. It provides fundamental knowledge on available materials and treatment processes, as well as applications, including adsorptive remediation and catalytic remediation. Organized clearly by type of material, this book presents a consistent structure for each chapter, including characteristics of the materials, basic and important physicochemical features for environmental remediation applications, routes of synthesis, recent advances as remediation medias, and future perspectives.
This book offers an interdisciplinary and practical examination of available materials and processes for environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.
Front Matter Front Matter Contents Contributors Copyright Dedication Note from the editors About the editors Acknowledgments Chapter 1 Trends in advanced materials for sustainable environmental remediation 1.1 Environmental pollution and role of materials in its remediation 1.2 Strategies for environmental remediation 1.3 Present challenges and future prospects for utilization of advanced materials in sustainable environmental remediation Conclusion References Chapter 2 Potential of MOF-based novel adsorbents for the removal of aquatic pollutants 2.1 Introduction 2.2 Various forms of aquatic pollutants 2.3 Traditional approaches for the treatment of aquatic pollutants 2.4 Overview of MOFs 2.4.1 Properties of MOFs and its synthesis 2.4.2 MOFs as an adsorbent 2.5 Applications of MOFs for the treatment of aquatic pollutants 2.5.1 Application of MOFs for the adsorption of heavy metals 2.5.2 MOFs for the adsorption of pharmaceuticals and personal products 2.5.3 MOFs for the adsorption of pesticides and other organic compounds 2.6 Large-scale production of the MOFs 2.7 Challenges and future directives Conclusions References Chapter 3 Metal-organic frameworks for the prolific purification of hazardous airborne pollutants 3.1 Introduction 3.2 Structural features of MOFs 3.3 Synthesis of MOFs 3.4 Adsorptive purification of airborne pollutants 3.4.1 Toxic industrial gas 3.4.2 Volatile organic compound \(VOC\) 3.4.3 Greenhouse gas 3.4.4 Particulate matter 3.4.5 Radioactive nuclide 3.4.6 Hg0 3.4.7 Chemical warfare agent 3.5 Innovative strategies for performance enhancement 3.5.1 Chemical functionalization 3.5.2 Pore size and shape control 3.5.3 MOF-derived composites 3.6 Comparison with commercial adsorbents 3.7 Regeneration and reusability 3.8 Prospects and challenges 3.9 Conclusion References Chapter 4 MOF-based materials as soil amendments 4.1 Introduction 4.2 Classification and toxicity of soil pollutants 4.2.1 Heavy metals 4.2.2 Organophosphorus pesticides 4.2.3 Polychlorinated biphenyls 4.2.4 Polyaromatic hydrocarbons 4.2.5 Endocrine disruptors 4.3 Overview of available methods to identify/remove soil pollutants 4.3.1 Preconcentration techniques 4.3.2 Sensing applications 4.3.3 Treatment techniques for soil pollutants 4.4 Prerequisite structural advantages of MOFs and their composites 4.4.1 Synthesis and fabrication process of MOFs for extraction of soil pollutant 4.4.2 Synthesis of MOFs for sensing applications 4.5 MOFs as an efficient tool for soil remediation 4.5.1 Extraction of soil contaminants 4.5.2 Adsorption 4.5.3 Sensing applications 4.6 Confronts and future scope of this technology Conclusions References Chapter 5 Metal-organic frameworks \(MOFs\) as a catalyst for advanced oxidation processes^^e2^^80^^94Micropollutant removal 5.1 Introduction 5.2 Methods of synthesis 5.2.1 Hydro/solvothermal method 5.2.2 Microwave-assisted synthesis 5.2.3 Ultrasound-assisted synthesis 5.2.4 Electrochemical synthesis 5.2.5 Mechanochemical synthesis 5.2.6 Slow evaporation synthesis 5.2.7 Postsynthesis process involving in the generation of active MOF 5.3 MOFs and their derivatives 5.3.1 MOFs 5.3.2 Carbon composites 5.3.3 Metal oxides 5.3.4 MOF composites 5.3.5 Hybrid MOFs by carbonization 5.4 Applications of MOFs in AOP 5.4.1 Ozonation 5.4.2 Photocatalysis 5.4.3 Sonolysis \(ultrasound\) 5.4.4 Fenton reaction 5.4.5 Electrochemical oxidation 5.4.6 Sulfate radical^^e2^^80^^93based AOP 5.5 Strategies to improve performance of MOFs 5.6 Stability and reusability Conclusion References Chapter 6 Engineering structured metal-organic frameworks for environmental applications 6.1 Introduction 6.2 Spheres 6.3 Pellets 6.4 Monoliths 6.5 3D-printed monoliths Conclusions and further outlook References Chapter 7 Aerogel, xerogel, and cryogel: Synthesis, surface chemistry, and properties-Practical environmental applications and the future developments 7.1 Introduction 7.2 Preparation and affecting synthesis parameters of aerogels, cryogels, and xerogels 7.2.1 Sol preparation and gel formation 7.2.2 Aging 7.2.3 Surface modification 7.2.4 Drying 7.3 Features and applications of aerogels, cryogels, and xerogels 7.3.1 Chemical characteristics-Hydrophilic/hydrophobicity properties 7.3.2 Morphological properties 7.3.3 Thermal conductivity 7.3.4 Optical properties 7.3.5 Acoustic properties 7.3.6 Electrical properties 7.3.7 Mechanical properties 7.4 Surface chemistry of aerogels, cryogels, and xerogels 7.5 Environmental applications of aerogels, cryogels, and xerogels 7.5.1 Air cleaning applications 7.5.2 Water treatment applications 7.5.3 Catalytic applications Conclusion and future development References Chapter 8 Nanoscale cellulose and nanocellulose-based aerogels 8.1 Introduction 8.2 Cellulose and nanocellulose 8.2.1 Source and structure of cellulose and nanoscale cellulose \(NC\) 8.2.2 Extraction of cellulose and nanoscale cellulose 8.2.3 Classification and characteristics of nanoscale cellulose 8.3 Nanocellulose-based aerogels 8.3.1 Characteristics of nanocellulose-based aerogels 8.3.2 Fabrication of nanocellulose-based aerogels 8.4 Applications of nanoscale cellulose 8.4.1 Application of nanocellulose-based aerogels 8.4.2 Other application areas 8.5 Perspective and outlook 8.6 Summary References Chapter 9 Sol-gel^^e2^^80^^93derived silica xerogels: Synthesis, properties, and their applicability for removal of hazardous pollutants* 9.1 Introduction and overview of sol-gel method 9.2 Engineering the porosity and surface chemistry of silica xerogels 9.3 Adsorptive removal of hazardous pollutants 9.3.1 Metal extraction 9.3.2 Organic wastes removal 9.3.3 Adsorption of gases and vapors 9.4 Summary and outlook References Chapter 10 Processing of hybrid TiO2 semiconducting materials and their environmental application 10.1 Introduction 10.2 Methods for the processing of hybrid TiO2 10.2.1 Synthesis of hybrid TiO2 using hydrothermal method 10.2.2 Synthesis of hybrid TiO2 using solvothermal method 10.2.3 Synthesis of hybrid TiO2 using sol-gel method 10.2.4 Synthesis of hybrid TiO2 using chemical vapor deposition \(CVD\) method 10.2.5 Synthesis of hybrid TiO2 using the microwave method 10.3 Processing of hybrid TiO2 nanomaterials 10.3.1 1D, 2D, and 3D hybrid TiO2 materials 10.3.2 Processing of TiO2 composite materials 10.3.3 Processing of doped TiO2 10.3.4 TiO2 doped with metal 10.3.5 TiO2 doped with nonmetal 10.3.6 Processing of quantum dots deposited/modified TiO2 10.4 Environmental application of hybrid TiO2 nanoparticles 10.4.1 Application of hybrid TiO2 in water purification 10.4.2 Application of hybrid TiO2 in hydrogen generation 10.4.3 Application of hybrid TiO2 in air purification/reduction of carbon dioxide \(CO2\) 10.4.4 Application of hybrid TiO2 in mineralization of chemical warfare agents 10.4.5 Application of hybrid TiO2 in dye-sensitized solar cells \(DSSCs\) 10.4.6 Application of hybrid TiO2 in treatment of contaminated soil Conclusions and perspectives References Chapter 11 Fundamentals of layered double hydroxides and environmental applications 11.1 Introduction 11.2 Layered double hydroxides 11.2.1 Structure 11.2.2 Synthesis 11.2.3 Properties 11.3 Environmental applications 11.3.1 Adsorption 11.3.2 Heavy metal control 11.3.3 Soil treatment 11.3.4 CO2 control: Separation and capture Conclusion and Future Perspectives References Chapter 12 Green nanocomposites and gamma radiation as a novel treatment for dye removal in wastewater 12.1 Introduction 12.2 Textile dyes and wastewater 12.3 Green synthesis of iron oxide nanoparticle and water remediation 12.3.1 Properties of iron oxide nanoparticles 12.3.2 Iron oxide nanoparticles and Fenton process 12.3.3 Iron oxide nanoparticles and support materials 12.4 Iron oxide nanoparticles supported on ion-exchange resins 12.5 Water remediation using gamma irradiation 12.6 Water remediation by using iron oxides nanoparticles-based composites Conclusions Acknowledgments References Chapter 13 Potential of zeolite as an adsorbent for the removal of trace metal\(loids\) in wastewater 13.1 Trace metal\(loids\) contamination in water 13.2 Zeolite: Chemistry 13.2.1 Natural zeolite 13.2.2 Synthetic zeolite 13.2.3 Surface chemistry 13.3 Role of zeolite in remediation of trace metal\(loids\) contaminants 13.3.1 Cationic metals 13.3.2 Anionic metals 13.3.3 Metalloids 13.3.4 The mechanism involved in the remediation of trace metals 13.4 Modification of zeolite for the removal of toxic metals 13.4.1 Modification by ion exchangers 13.4.2 Modification with acid and base 13.4.3 Composites with other materials 13.5 Summary and future perspectives References Chapter 14 Natural and synthetic clay-based materials applied for the removal of emerging pollutants from aqueous medium 14.1 Introduction 14.1.1 Water pollution by emerging contaminants 14.1.2 Adsorption mechanism 14.1.3 Clay-based materials as promising adsorbents for environmental remediation 14.2 Natural clays for adsorption 14.2.1 Clay minerals classification 14.2.2 Properties and characteristics of natural clay minerals 14.3 Modified and synthesized clay-based materials for adsorption 14.3.1 Synthesis and types of modification 14.4 Adsorption of emerging contaminants by natural and modified clays 14.4.1 Pharmaceutical products 14.4.2 Endocrine disruptors and chemical of personal care products 14.5 Comparison of different activation methods in the same clay type 14.6 Future perspectives and final remarks Acknowledgments References Chapter 15 Application of magnetic biochars for the removal of aquatic pollutants 15.1 Introduction 15.2 Fabrication techniques for magnetic biochar 15.2.1 Impregnation-pyrolysis 15.2.2 Coprecipitation 15.2.3 Reductive codeposition 15.2.4 Solvothermal 15.2.5 Hydrothermal carbonization 15.2.6 Other fabrication techniques 15.3 Physicochemical properties of magnetic biochar 15.3.1 Specific surface area 15.3.2 Elemental composition 15.3.3 Point of zero charge \(pHpzc\) 15.3.4 Functional groups 15.4 Factors affecting the adsorption of pollutants 15.4.1 Chemical impregnation ratio 15.4.2 Pyrolysis temperature 15.4.3 Solution pH 15.5 Applications of magnetic biochar 15.5.1 Heavy metal\(loid\)s adsorption 15.5.2 Nuclear waste pollutants 15.5.3 Organic pollutants 15.5.4 Anionic pollutants 15.6 Adsorption mechanisms 15.6.1 Ion exchange 15.6.2 Surface complexation 15.6.3 Oxygen-containing functional groups 15.6.4 Electrostatic interaction 15.6.5 Coprecipitation 15.6.6 Chemical bond adsorption 15.6.7 Reduction 15.7 Magnetic biochar regeneration and disposal Conclusions and future recommendations Acknowledgments References Chapter 16 Progress in the synthesis and applications of polymeric nanomaterials derived from waste lignocellulosic biomass 16.1 Overview on the lignocellulosic-derived nanomaterials 16.1.1 Nanofibrous cellulose \(NFC\) 16.1.2 Nanocrystalline cellulose \(NCC\) 16.1.3 Lignin nanoparticles \(LNPs\) 16.2 Isolation of lignocellulosic-based nanomaterials 16.2.1 Cellulose nanomaterials 16.2.2 Lignin nanoparticles 16.3 Functionality improvement through structural modification 16.4 Progress in the application of cellulose and lignin-derived nanoparticles 16.4.1 Environmental applications of nanocrystalline cellulose 16.4.2 Drug delivery applications of lignin nanoparticles 16.5 Conclusions References Chapter 17 Activated carbons in full-scale advanced wastewater treatment 17.1 Activated carbons 17.2 Environmental challenges driving the use of activated carbon 17.2.1 Contaminants of emerging concern in urban water systems 17.2.2 CECs in water legislation and regulation in Europe 17.3 Activated carbon based processes for controlling CECs in wastewater treatment 17.3.1 Available technologies for CEC control in urban WWTPs 17.3.2 Overview of PAC and GAC set-ups in WWTPs 17.3.3 Further practical issues in CEC removal by PAC adsorption 17.3.4 Cost evaluation 17.4 Activated carbons used for wastewater treatment 17.4.1 Data available in literature for large-scale application in urban WWTPs 17.4.2 Procedures used for activated carbon selection Activated carbons’ selection criteria Water matrix and competitive adsorption Target contaminants’ key properties for adsorption 17.4.3 Properties of activated carbons preselected for application in urban WWTPs Activated carbons’ raw materials Activated carbons’ textural and surface properties Activated carbons’ physical properties 17.5 Final remarks and research needs Acknowledgments References Chapter 18 Carbon nanotube-based materials for environmental remediation processes 18.1 Introduction 18.2 Overview of CNTs synthesis and characterization techniques 18.3 CNTs as adsorbents, membranes, and photocatalysts 18.4 CNT combined with biopolymers 18.4.1 CNT/chitosan composites 18.4.2 CNT/cellulose composites 18.4.3 CNT/xanthan gum composites 18.4.4 CNT/lignin composites 18.4.5 CNT/alginate composites 18.4.6 CNT/dendrimers composites 18.5 Environmental and human safety 18.6 CNT-based biomaterials in environmental remediation 18.6.1 Adsorption 18.6.2 Membrane filtration 18.6.3 Photocatalytic degradation Conclusions and remarks References Chapter 19 Applications of graphene oxide \(GO\) and its hybrid with nanoparticles for water decontamination 19.1 Introduction 19.2 Graphene oxide \(GO\) and reduced graphene oxide \(rGO\) 19.2.1 Chemical and structural properties of GO and rGO 19.2.2 Synthetic routes for GO and rGO 19.2.3 Anchoring and stabilization of NPs on GO 19.3 Organic and inorganic pollutants: Application of GO and hybrid GO nanomaterials to removal contaminants 19.4 Utilization of GO and hybrid-GO nanomaterials to water 19.5 Conclusions Acknowledgments References Chapter 20 Graphitic carbon nitride: Triggering the solar light-assisted decomposition of hazardous substances 20.1 Introduction 20.2 Synthesis of materials and their characteristics 20.3 Photoactivity mechanisms of diverse g-C3N4 20.4 The extent of decomposition of hazardous substances 20.4.1 Metal-free g-C3N4 to combat waterborne pollutants 20.4.2 Metal-enhanced g-C3N4 photocatalysts for wastewater treatment 20.5 Conclusion References Chapter 21 Utilization of fly ash-based advanced materials in adsorptive removal of pollutants from aqueous media 21.1 Introduction 21.2 Synthesis methods of fly ash- / modified fly ash-based adsorbents 21.3 Application of fly ash-based materials for adsorption of pollutants from water 21.3.1 Adsorption of heavy metals from aqueous systems 21.3.2 Adsorption of tannic acid and its derivatives 21.3.3 Adsorption of pesticides 21.3.4 Adsorption of dye molecules 21.4 Future perspectives Acknowledgments References Chapter 22 Activated carbons derived from biomass for the removal by adsorption of several pesticides from water 22.1 Introduction 22.2 Modeling sustainable activated carbons for the removal of pesticides by adsorption 22.3 Kinetic modeling 22.4 Isotherm modeling 22.5 Thermodynamic studies 22.6 Relation between adsorption capacity and surface area in the adsorption 22.7 Concluding remarks and recommendations for future work Acknowledgments References Chapter 23 Synthesis and application of nanostructured iron oxides heterogeneous catalysts for environmental applications 23.1 Introduction 23.2 Pristine and engineered iron oxides: Synthesis routes 23.2.1 Pristine iron oxides 23.2.2 Synthetic iron oxides 23.3 Properties of nanostructured iron oxides 23.3.1 Chemical properties 23.3.2 Redox properties 23.3.3 Magnetic properties 23.4 Application of nanostructured iron oxides for environmental remediation 23.4.1 Adsorption 23.4.2 Catalytic ozonation 23.4.3 Fenton and Fenton-related processes 23.4.4 Sulfate-based advanced oxidation processes 23.4.5 Use of iron oxide catalysts in photocatalysis Conclusions References Index