ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments

دانلود کتاب مواد پیشرفته برای اصلاح زیست محیطی پایدار: محیط های خشکی و آبی

Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments

مشخصات کتاب

Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0323904858, 9780323904858 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 662
[663] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد پیشرفته برای اصلاح زیست محیطی پایدار: محیط های خشکی و آبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد پیشرفته برای اصلاح زیست محیطی پایدار: محیط های خشکی و آبی



مواد پیشرفته برای اصلاح زیست محیطی پایدار: محیط های خشکی و آبی پوشش دقیق و جامعی از مواد جدید و پیشرفته را ارائه می دهد که می تواند برای رسیدگی به نگرانی روزافزون جهانی از آلودگی منابع طبیعی استفاده شود. در آب، هوا و خاک این دانش اساسی در مورد مواد موجود و فرآیندهای تصفیه و همچنین کاربردهایی از جمله اصلاح جذبی و اصلاح کاتالیزوری ارائه می دهد. این کتاب که به وضوح بر اساس نوع مواد سازماندهی شده است، یک ساختار ثابت برای هر فصل، شامل ویژگی‌های مواد، ویژگی‌های اساسی و مهم فیزیکوشیمیایی برای کاربردهای اصلاح محیطی، مسیرهای سنتز، پیشرفت‌های اخیر به عنوان رسانه‌های اصلاح، و دیدگاه‌های آینده ارائه می‌کند.

این کتاب یک بررسی میان رشته ای و عملی از مواد و فرآیندهای موجود برای اصلاح محیطی ارائه می دهد که برای دانشمندان محیط زیست، دانشمندان مواد، شیمیدانان محیط زیست و مهندسان محیط زیست به طور یکسان ارزشمند خواهد بود. /span>


توضیحاتی درمورد کتاب به خارجی

Advanced Materials for Sustainable Environmental Remediation: Terrestrial and Aquatic Environments presents detailed, comprehensive coverage of novel and advanced materials that can be applied to address the growing global concern of the pollution of natural resources in waters, the air and soil. It provides fundamental knowledge on available materials and treatment processes, as well as applications, including adsorptive remediation and catalytic remediation. Organized clearly by type of material, this book presents a consistent structure for each chapter, including characteristics of the materials, basic and important physicochemical features for environmental remediation applications, routes of synthesis, recent advances as remediation medias, and future perspectives.

This book offers an interdisciplinary and practical examination of available materials and processes for environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.



فهرست مطالب

Front Matter
Front Matter
Contents
Contributors
Copyright
Dedication
Note from the editors
About the editors
Acknowledgments
Chapter 1 Trends in advanced materials for sustainable environmental remediation
	1.1 Environmental pollution and role of materials in its remediation
	1.2 Strategies for environmental remediation
	1.3 Present challenges and future prospects for utilization of advanced materials in sustainable environmental remediation
	Conclusion
	References
Chapter 2 Potential of MOF-based novel adsorbents for the removal of aquatic pollutants
	2.1 Introduction
	2.2 Various forms of aquatic pollutants
	2.3 Traditional approaches for the treatment of aquatic pollutants
	2.4 Overview of MOFs
		2.4.1 Properties of MOFs and its synthesis
		2.4.2 MOFs as an adsorbent
	2.5 Applications of MOFs for the treatment of aquatic pollutants
		2.5.1 Application of MOFs for the adsorption of heavy metals
		2.5.2 MOFs for the adsorption of pharmaceuticals and personal products
		2.5.3 MOFs for the adsorption of pesticides and other organic compounds
	2.6 Large-scale production of the MOFs
	2.7 Challenges and future directives
	Conclusions
	References
Chapter 3 Metal-organic frameworks for the prolific purification of hazardous airborne pollutants
	3.1 Introduction
	3.2 Structural features of MOFs
	3.3 Synthesis of MOFs
	3.4 Adsorptive purification of airborne pollutants
		3.4.1 Toxic industrial gas
		3.4.2 Volatile organic compound \(VOC\)
		3.4.3 Greenhouse gas
		3.4.4 Particulate matter
		3.4.5 Radioactive nuclide
		3.4.6 Hg0
		3.4.7 Chemical warfare agent
	3.5 Innovative strategies for performance enhancement
		3.5.1 Chemical functionalization
		3.5.2 Pore size and shape control
		3.5.3 MOF-derived composites
	3.6 Comparison with commercial adsorbents
	3.7 Regeneration and reusability
	3.8 Prospects and challenges
	3.9 Conclusion
	References
Chapter 4 MOF-based materials as soil amendments
	4.1 Introduction
	4.2 Classification and toxicity of soil pollutants
		4.2.1 Heavy metals
		4.2.2 Organophosphorus pesticides
		4.2.3 Polychlorinated biphenyls
		4.2.4 Polyaromatic hydrocarbons
		4.2.5 Endocrine disruptors
	4.3 Overview of available methods to identify/remove soil pollutants
		4.3.1 Preconcentration techniques
		4.3.2 Sensing applications
		4.3.3 Treatment techniques for soil pollutants
	4.4 Prerequisite structural advantages of MOFs and their composites
		4.4.1 Synthesis and fabrication process of MOFs for extraction of soil pollutant
		4.4.2 Synthesis of MOFs for sensing applications
	4.5 MOFs as an efficient tool for soil remediation
		4.5.1 Extraction of soil contaminants
		4.5.2 Adsorption
		4.5.3 Sensing applications
	4.6 Confronts and future scope of this technology
	Conclusions
	References
Chapter 5 Metal-organic frameworks \(MOFs\) as a catalyst for advanced oxidation processes^^e2^^80^^94Micropollutant removal
	5.1 Introduction
	5.2 Methods of synthesis
		5.2.1 Hydro/solvothermal method
		5.2.2 Microwave-assisted synthesis
		5.2.3 Ultrasound-assisted synthesis
		5.2.4 Electrochemical synthesis
		5.2.5 Mechanochemical synthesis
		5.2.6 Slow evaporation synthesis
		5.2.7 Postsynthesis process involving in the generation of active MOF
	5.3 MOFs and their derivatives
		5.3.1 MOFs
		5.3.2 Carbon composites
		5.3.3 Metal oxides
		5.3.4 MOF composites
		5.3.5 Hybrid MOFs by carbonization
	5.4 Applications of MOFs in AOP
		5.4.1 Ozonation
		5.4.2 Photocatalysis
		5.4.3 Sonolysis \(ultrasound\)
		5.4.4 Fenton reaction
		5.4.5 Electrochemical oxidation
		5.4.6 Sulfate radical^^e2^^80^^93based AOP
	5.5 Strategies to improve performance of MOFs
	5.6 Stability and reusability
	Conclusion
	References
Chapter 6 Engineering structured metal-organic frameworks for environmental applications
	6.1 Introduction
	6.2 Spheres
	6.3 Pellets
	6.4 Monoliths
	6.5 3D-printed monoliths
	Conclusions and further outlook
	References
Chapter 7 Aerogel, xerogel, and cryogel: Synthesis, surface chemistry, and properties-Practical environmental applications and the future developments
	7.1 Introduction
	7.2 Preparation and affecting synthesis parameters of aerogels, cryogels, and xerogels
		7.2.1 Sol preparation and gel formation
		7.2.2 Aging
		7.2.3 Surface modification
		7.2.4 Drying
	7.3 Features and applications of aerogels, cryogels, and xerogels
		7.3.1 Chemical characteristics-Hydrophilic/hydrophobicity properties
		7.3.2 Morphological properties
		7.3.3 Thermal conductivity
		7.3.4 Optical properties
		7.3.5 Acoustic properties
		7.3.6 Electrical properties
		7.3.7 Mechanical properties
	7.4 Surface chemistry of aerogels, cryogels, and xerogels
	7.5 Environmental applications of aerogels, cryogels, and xerogels
		7.5.1 Air cleaning applications
		7.5.2 Water treatment applications
		7.5.3 Catalytic applications
	Conclusion and future development
	References
Chapter 8 Nanoscale cellulose and nanocellulose-based aerogels
	8.1 Introduction
	8.2 Cellulose and nanocellulose
		8.2.1 Source and structure of cellulose and nanoscale cellulose \(NC\)
		8.2.2 Extraction of cellulose and nanoscale cellulose
		8.2.3 Classification and characteristics of nanoscale cellulose
	8.3 Nanocellulose-based aerogels
		8.3.1 Characteristics of nanocellulose-based aerogels
		8.3.2 Fabrication of nanocellulose-based aerogels
	8.4 Applications of nanoscale cellulose
		8.4.1 Application of nanocellulose-based aerogels
		8.4.2 Other application areas
	8.5 Perspective and outlook
	8.6 Summary
	References
Chapter 9 Sol-gel^^e2^^80^^93derived silica xerogels: Synthesis, properties, and their applicability for removal of hazardous pollutants*
	9.1 Introduction and overview of sol-gel method
	9.2 Engineering the porosity and surface chemistry of silica xerogels
	9.3 Adsorptive removal of hazardous pollutants
		9.3.1 Metal extraction
		9.3.2 Organic wastes removal
		9.3.3 Adsorption of gases and vapors
	9.4 Summary and outlook
	References
Chapter 10 Processing of hybrid TiO2 semiconducting materials and their environmental application
	10.1 Introduction
	10.2 Methods for the processing of hybrid TiO2
		10.2.1 Synthesis of hybrid TiO2 using hydrothermal method
		10.2.2 Synthesis of hybrid TiO2 using solvothermal method
		10.2.3 Synthesis of hybrid TiO2 using sol-gel method
		10.2.4 Synthesis of hybrid TiO2 using chemical vapor deposition \(CVD\) method
		10.2.5 Synthesis of hybrid TiO2 using the microwave method
	10.3 Processing of hybrid TiO2 nanomaterials
		10.3.1 1D, 2D, and 3D hybrid TiO2 materials
		10.3.2 Processing of TiO2 composite materials
		10.3.3 Processing of doped TiO2
		10.3.4 TiO2 doped with metal
		10.3.5 TiO2 doped with nonmetal
		10.3.6 Processing of quantum dots deposited/modified TiO2
	10.4 Environmental application of hybrid TiO2 nanoparticles
		10.4.1 Application of hybrid TiO2 in water purification
		10.4.2 Application of hybrid TiO2 in hydrogen generation
		10.4.3 Application of hybrid TiO2 in air purification/reduction of carbon dioxide \(CO2\)
		10.4.4 Application of hybrid TiO2 in mineralization of chemical warfare agents
		10.4.5 Application of hybrid TiO2 in dye-sensitized solar cells \(DSSCs\)
		10.4.6 Application of hybrid TiO2 in treatment of contaminated soil
	Conclusions and perspectives
	References
Chapter 11 Fundamentals of layered double hydroxides and environmental applications
	11.1 Introduction
	11.2 Layered double hydroxides
		11.2.1 Structure
		11.2.2 Synthesis
		11.2.3 Properties
	11.3 Environmental applications
		11.3.1 Adsorption
		11.3.2 Heavy metal control
		11.3.3 Soil treatment
		11.3.4 CO2 control: Separation and capture
	Conclusion and Future Perspectives
	References
Chapter 12 Green nanocomposites and gamma radiation as a novel treatment for dye removal in wastewater
	12.1 Introduction
	12.2 Textile dyes and wastewater
	12.3 Green synthesis of iron oxide nanoparticle and water remediation
		12.3.1 Properties of iron oxide nanoparticles
		12.3.2 Iron oxide nanoparticles and Fenton process
		12.3.3 Iron oxide nanoparticles and support materials
	12.4 Iron oxide nanoparticles supported on ion-exchange resins
	12.5 Water remediation using gamma irradiation
	12.6 Water remediation by using iron oxides nanoparticles-based composites
	Conclusions
	Acknowledgments
	References
Chapter 13 Potential of zeolite as an adsorbent for the removal of trace metal\(loids\) in wastewater
	13.1 Trace metal\(loids\) contamination in water
	13.2 Zeolite: Chemistry
		13.2.1 Natural zeolite
		13.2.2 Synthetic zeolite
		13.2.3 Surface chemistry
	13.3 Role of zeolite in remediation of trace metal\(loids\) contaminants
		13.3.1 Cationic metals
		13.3.2 Anionic metals
		13.3.3 Metalloids
		13.3.4 The mechanism involved in the remediation of trace metals
	13.4 Modification of zeolite for the removal of toxic metals
		13.4.1 Modification by ion exchangers
		13.4.2 Modification with acid and base
		13.4.3 Composites with other materials
	13.5 Summary and future perspectives
	References
Chapter 14 Natural and synthetic clay-based materials applied for the removal of emerging pollutants from aqueous medium
	14.1 Introduction
		14.1.1 Water pollution by emerging contaminants
		14.1.2 Adsorption mechanism
		14.1.3 Clay-based materials as promising adsorbents for environmental remediation
	14.2 Natural clays for adsorption
		14.2.1 Clay minerals classification
		14.2.2 Properties and characteristics of natural clay minerals
	14.3 Modified and synthesized clay-based materials for adsorption
		14.3.1 Synthesis and types of modification
	14.4 Adsorption of emerging contaminants by natural and modified clays
		14.4.1 Pharmaceutical products
		14.4.2 Endocrine disruptors and chemical of personal care products
	14.5 Comparison of different activation methods in the same clay type
	14.6 Future perspectives and final remarks
	Acknowledgments
	References
Chapter 15 Application of magnetic biochars for the removal of aquatic pollutants
	15.1 Introduction
	15.2 Fabrication techniques for magnetic biochar
		15.2.1 Impregnation-pyrolysis
		15.2.2 Coprecipitation
		15.2.3 Reductive codeposition
		15.2.4 Solvothermal
		15.2.5 Hydrothermal carbonization
		15.2.6 Other fabrication techniques
	15.3 Physicochemical properties of magnetic biochar
		15.3.1 Specific surface area
		15.3.2 Elemental composition
		15.3.3 Point of zero charge \(pHpzc\)
		15.3.4 Functional groups
	15.4 Factors affecting the adsorption of pollutants
		15.4.1 Chemical impregnation ratio
		15.4.2 Pyrolysis temperature
		15.4.3 Solution pH
	15.5 Applications of magnetic biochar
		15.5.1 Heavy metal\(loid\)s adsorption
		15.5.2 Nuclear waste pollutants
		15.5.3 Organic pollutants
		15.5.4 Anionic pollutants
	15.6 Adsorption mechanisms
		15.6.1 Ion exchange
		15.6.2 Surface complexation
		15.6.3 Oxygen-containing functional groups
		15.6.4 Electrostatic interaction
		15.6.5 Coprecipitation
		15.6.6 Chemical bond adsorption
		15.6.7 Reduction
	15.7 Magnetic biochar regeneration and disposal
	Conclusions and future recommendations
	Acknowledgments
	References
Chapter 16 Progress in the synthesis and applications of polymeric nanomaterials derived from waste lignocellulosic biomass
	16.1 Overview on the lignocellulosic-derived nanomaterials
		16.1.1 Nanofibrous cellulose \(NFC\)
		16.1.2 Nanocrystalline cellulose \(NCC\)
		16.1.3 Lignin nanoparticles \(LNPs\)
	16.2 Isolation of lignocellulosic-based nanomaterials
		16.2.1 Cellulose nanomaterials
		16.2.2 Lignin nanoparticles
	16.3 Functionality improvement through structural modification
	16.4 Progress in the application of cellulose and lignin-derived nanoparticles
		16.4.1 Environmental applications of nanocrystalline cellulose
		16.4.2 Drug delivery applications of lignin nanoparticles
	16.5 Conclusions
	References
Chapter 17 Activated carbons in full-scale advanced wastewater treatment
	17.1 Activated carbons
	17.2 Environmental challenges driving the use of activated carbon
		17.2.1 Contaminants of emerging concern in urban water systems
		17.2.2 CECs in water legislation and regulation in Europe
	17.3 Activated carbon based processes for controlling CECs in wastewater treatment
		17.3.1 Available technologies for CEC control in urban WWTPs
		17.3.2 Overview of PAC and GAC set-ups in WWTPs
		17.3.3 Further practical issues in CEC removal by PAC adsorption
		17.3.4 Cost evaluation
	17.4 Activated carbons used for wastewater treatment
		17.4.1 Data available in literature for large-scale application in urban WWTPs
		17.4.2 Procedures used for activated carbon selection
		Activated carbons’ selection criteria
		Water matrix and competitive adsorption
		Target contaminants’ key properties for adsorption
		17.4.3 Properties of activated carbons preselected for application in urban WWTPs
		Activated carbons’ raw materials
		Activated carbons’ textural and surface properties
		Activated carbons’ physical properties
	17.5 Final remarks and research needs
	Acknowledgments
	References
Chapter 18 Carbon nanotube-based materials for environmental remediation processes
	18.1 Introduction
	18.2 Overview of CNTs synthesis and characterization techniques
	18.3 CNTs as adsorbents, membranes, and photocatalysts
	18.4 CNT combined with biopolymers
		18.4.1 CNT/chitosan composites
		18.4.2 CNT/cellulose composites
		18.4.3 CNT/xanthan gum composites
		18.4.4 CNT/lignin composites
		18.4.5 CNT/alginate composites
		18.4.6 CNT/dendrimers composites
	18.5 Environmental and human safety
	18.6 CNT-based biomaterials in environmental remediation
		18.6.1 Adsorption
		18.6.2 Membrane filtration
		18.6.3 Photocatalytic degradation
	Conclusions and remarks
	References
Chapter 19 Applications of graphene oxide \(GO\) and its hybrid with nanoparticles for water decontamination
	19.1 Introduction
	19.2 Graphene oxide \(GO\) and reduced graphene oxide \(rGO\)
		19.2.1 Chemical and structural properties of GO and rGO
		19.2.2 Synthetic routes for GO and rGO
		19.2.3 Anchoring and stabilization of NPs on GO
	19.3 Organic and inorganic pollutants: Application of GO and hybrid GO nanomaterials to removal contaminants
	19.4 Utilization of GO and hybrid-GO nanomaterials to water
	19.5 Conclusions
	Acknowledgments
	References
Chapter 20 Graphitic carbon nitride: Triggering the solar light-assisted decomposition of hazardous substances
	20.1 Introduction
	20.2 Synthesis of materials and their characteristics
	20.3 Photoactivity mechanisms of diverse g-C3N4
	20.4 The extent of decomposition of hazardous substances
		20.4.1 Metal-free g-C3N4 to combat waterborne pollutants
		20.4.2 Metal-enhanced g-C3N4 photocatalysts for wastewater treatment
	20.5 Conclusion
	References
Chapter 21 Utilization of fly ash-based advanced materials in adsorptive removal of pollutants from aqueous media
	21.1 Introduction
	21.2 Synthesis methods of fly ash- / modified fly ash-based adsorbents
	21.3 Application of fly ash-based materials for adsorption of pollutants from water
		21.3.1 Adsorption of heavy metals from aqueous systems
		21.3.2 Adsorption of tannic acid and its derivatives
		21.3.3 Adsorption of pesticides
		21.3.4 Adsorption of dye molecules
	21.4 Future perspectives
	Acknowledgments
	References
Chapter 22 Activated carbons derived from biomass for the removal by adsorption of several pesticides from water
	22.1 Introduction
	22.2 Modeling sustainable activated carbons for the removal of pesticides by adsorption
	22.3 Kinetic modeling
	22.4 Isotherm modeling
	22.5 Thermodynamic studies
	22.6 Relation between adsorption capacity and surface area in the adsorption
	22.7 Concluding remarks and recommendations for future work
	Acknowledgments
	References
Chapter 23 Synthesis and application of nanostructured iron oxides heterogeneous catalysts for environmental applications
	23.1 Introduction
	23.2 Pristine and engineered iron oxides: Synthesis routes
		23.2.1 Pristine iron oxides
		23.2.2 Synthetic iron oxides
	23.3 Properties of nanostructured iron oxides
		23.3.1 Chemical properties
		23.3.2 Redox properties
		23.3.3 Magnetic properties
	23.4 Application of nanostructured iron oxides for environmental remediation
		23.4.1 Adsorption
		23.4.2 Catalytic ozonation
		23.4.3 Fenton and Fenton-related processes
		23.4.4 Sulfate-based advanced oxidation processes
		23.4.5 Use of iron oxide catalysts in photocatalysis
	Conclusions
	References
Index




نظرات کاربران