دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: byChander Prakash, Sunpreet Singh, J. Paulo Davim (editors) سری: ISBN (شابک) : 9780429298042, 9780367275129 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 245 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Advanced manufacturing and processing technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنولوژی ساخت و پردازش پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 A Critical Review on the Machining of Engineering Materials by Die-Sinking EDM 1.1 Introduction 1.2 Researches on Electrical Discharge Machining Process 1.2.1 Researches on Enhancement of Tool Wear 1.2.2 Optimization of Process Parameters 1.2.3 Selection of Electrode Material 1.2.4 Multispark Erosion Studies 1.2.5 Selection of Optimized Pulse Duration 1.2.6 Vibratory Tool and Workpiece 1.2.7 Introducing Servo Control Mechanism 1.2.8 Magnetic Field–Based Electrical Discharge Machining 1.2.9 Special Tools 1.2.10 CNC-Controlled Electrical Discharge Machining 1.2.11 Selection of Dielectric Medium 1.3 Application of Electrical Discharge Machining for Biomaterials 1.4 Conclusions References Chapter 2 Optimization of Machining Parameters of High-Speed Toolpath to Achieve Minimum Cycle Time for Ti-6Al-4V 2.1 Introduction to High-SpeedMachining 2.2 Experimental Setup 2.2.1 Selection of Material 2.2.2 Job Setup on Machine 2.2.3 Machine Specifications 2.2.4 High Helix Cutter 2.2.5 Machining Strategy: Dynamic Cutting Strategy from Mastercam Software 2.2.6 Selection of Parameters 2.2.7 Design of Experimentation 2.2.8 Results from Response Surface Methodology 2.3 Results and Discussions 2.3.1 Effect of Process Parameters on the Spindle Load 2.3.2 Effect of the Process Parameters on Cycle Time 2.4 Conclusion References Chapter 3 A Review of Machinability Aspects of Difficult-to-Cut Materials Using Microtexture Patterns 3.1 Introduction 3.1.1 Judging Machinability 3.1.1.1 Tool Life 3.1.1.2 Power Consumption 3.1.1.3 Surface Finish 3.1.1.4 Chip Form 3.1.2 Difficult-to-Cut Material 3.1.3 Compilation of Machining Technologies 3.1.4 Various Steps Taken to Solve Issues 3.1.4.1 Hot Machining 3.1.4.2 Minimum Quantity of Lubricant 3.1.4.3 Coated Tools 3.1.4.4 High-SpeedMachining 3.1.4.5 Flood Cooling 3.1.4.6 Microgrooves 3.2 Literature Review 3.3 Discussion and Future Work 3.4 Conclusions References Chapter 4 Micromachining 4.1 Introduction 4.2 Conventional Micromachining 4.3 Nonconventional Micromachining 4.3.1 Ultrasonic Micromachining 4.3.1.1 Working Principle 4.3.1.2 Tool Material 4.3.1.3 Tool Feed Mechanism 4.3.1.4 Abrasive Slurry System 4.3.1.5 Oscillating System 4.3.1.6 Process Parameters 4.3.1.7 Effect of Process Parameters on Material Removal Rate 4.3.1.8 Advantages 4.3.1.9 Limitations 4.3.1.10 Applications 4.3.2 Abrasive Jet Micromachining 4.3.2.1 Working Principle 4.3.2.2 Process Parameters 4.3.2.3 Abrasive Material 4.3.2.4 Gas Medium 4.3.2.5 Nozzle 4.3.2.6 Effect of Material Removal Rate 4.3.2.7 Advantages 4.3.2.8 Limitations 4.3.2.9 Applications 4.3.3 Electrochemical Micromachining 4.3.3.1 Working Principle 4.3.3.2 Process Parameters 4.3.3.3 General Material Removal Rate Model for Electrochemical Micromachining 4.3.3.4 Advantages 4.3.3.5 Limitations 4.3.3.6 Applications 4.3.4 Electrodischarge Micromachining 4.3.4.1 Working Principle 4.3.4.2 Components of Electrodischarge Micromachining 4.3.4.3 Process Parameters 4.3.4.4 Variants of Electrodischarge Micromachining 4.3.4.5 Advantages 4.3.4.6 Limitations 4.3.4.7 Applications 4.3.5 Laser Beam Micromachining 4.3.5.1 Working Principle 4.3.5.2 Mechanism of Material Removal 4.3.5.3 Laser Mask Projection Technique 4.3.5.4 Effect of Laser Beam Intensity 4.3.5.5 Material Removal Rate in Pulsed Laser 4.3.5.6 Advantages 4.3.5.7 Limitations 4.3.5.8 Applications 4.3.6 Electron Beam Micromachining 4.3.6.1 Working Principle 4.3.6.2 Electron Beam Micromachining Equipment 4.3.6.3 Components of Electron Beam Micromachining 4.3.6.4 Process Parameters 4.3.6.5 Advantages 4.3.6.6 Limitations 4.3.6.7 Applications 4.3.7 Plasma Arc Micromachining 4.3.7.1 Working Principle 4.3.7.2 Process Parameter 4.3.7.3 Advantages 4.3.7.4 Limitations 4.3.7.5 Applications 4.4 Conclusions and Future Study References Chapter 5 A Review Study on Miniaturization—A Boon or Curse 5.1 Introduction 5.2 Recent Studies 5.2.1 Process Physics 5.2.2 Minimum Chip Thickness and Specific Cutting Energy 5.2.3 Ductile Mode Machining 5.2.4 Edges and Surface Finish 5.2.5 Workpiece and Design Issues 5.2.6 Machines, Tools, and Systems for Micromachining 5.2.7 Cutting Fluid 5.2.8 Machine Components and Controls 5.2.9 Metrology in Micromachining 5.3 Conclusion and Brief Discussion 5.4 Future Scope References Chapter 6 A Comprehensive Review on Similar and Dissimilar Metal Joints by Friction Welding 6.1 Introduction 6.2 Friction Welding between Ferrous and Nonferrous Metal Alloys 6.3 Friction Welding between Ferrous Metal Alloys 6.4 Friction Welding between Nonferrous Metal Alloys 6.5 Finite Element Model in Friction Welding 6.6 Conclusion References Chapter 7 3D Bioprinting in Pharmaceuticals, Medicine, and Tissue Engineering Applications 7.1 Introduction 7.2 3D Printing in Pharmaceuticals 7.3 3D Printing in Medicine 7.3.1 Materials 7.3.2 In situ 3D Bioprinting 7.3.2.1 Biomimicry 7.3.2.2 Independent Self-Assembly 7.3.2.3 Miniature Tissue Blocks 7.3.3 Bioscaffolding 7.4 Conclusion References Chapter 8 Investigating on the Lapping and Polishing Process of Cylindrical Rollers 8.1 Introduction 8.2 Fundamental Principle 8.3 Experimental Models to Determine Friction Coefficient in Machining 8.3.1 Setup and Conditions for Lapping Process 8.3.2 Setup and Conditions for Polishing Process 8.4 Effects of Experimental Conditions on the Friction Coefficients 8.4.1 Lapping Process with SiC Abrasive Slurry 8.4.2 Polishing Process with Al(2)O(3) Abrasive Slurry 8.5 Experimental Results for Lapping Process 8.5.1 Experimental Setup 8.5.2 Effect of Abrasive Size to Surface Roughness of Cylindrical Roller 8.5.3 Effect of Downforce to Surface Roughness of Cylindrical Roller 8.5.4 Effect of Downforce to Material Removal Rate of Cylindrical Roller 8.5.5 Effect of Downforce to Roundness of Cylindrical Roller 8.6 Experimental Results for Polishing Process 8.6.1 Experimental Setup 8.6.2 Effect of Abrasive Size to Surface Roughnessof Cylindrical Roller 8.6.3 Effect of Downforce to Surface Roughness of Cylindrical Roller 8.6.4 Effect of Downforce to Material Removal Rate of Cylindrical Roller 8.6.5 Effect of Downforce to Roundness of Cylindrical Roller 8.7 Conclusion References Chapter 9 NiTi Thin-Film Shape Memory Alloys and Their Industrial Application 9.1 Historical Background of Shape Memory Alloys 9.2 What Is Unique about NiTi Alloy? 9.3 Stress–Strain–Temperature Curve of a NiTi 9.4 Physical Metallurgy of NiTi Thin Film 9.4.1 Phase Diagram 9.4.2 Martensitic Transformation and Crystallography 9.5 Physical Properties of the NiTi Thin Film 9.5.1 Field-EmissionScanning Electron Microscopy 9.5.2 Grazing Incidence X-RayDiffraction 9.5.3 High-Resolution Transmission Electron Microscopy 9.6 Applications of Shape Memory Alloys 9.6.1 Microvalves and Micropumps 9.6.2 Microgripper and Microtweezer 9.6.3 Biomedical Equipment 9.7 Advantages and Limitations of NiTi Thin Film 9.8 Conclusions References 10 Carbon Fibers: Surface Modification Strategies and Biomedical Applications 10.1 Surface Treatment 10.1.1 Surface Oxidation 10.1.2 Surface Coating 10.2 Applications of Carbon Fibers 10.2.1 Carbon Fibers and Composite Implant for Bone 10.2.2 Carbon Fiber in Tissue Growth 10.2.3 Dental Implants 10.2.4 Regenerative Medicine 10.2.5 Carbon Fibers in Drug Delivery 10.2.6 Carbon Fibers in Biomedical Sensor 10.2.7 Carbon Fibers Composites 10.3 Summary References Index