دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Arya Uthaman, Sabu Thomas, Tianduo Li , Hanna Maria سری: Engineering Materials ISBN (شابک) : 3030853969, 9783030853969 ناشر: Springer سال نشر: 2021 تعداد صفحات: 690 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Functional Porous Materials: From Macro to Nano Scale Lengths به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد متخلخل کاربردی پیشرفته: از طول مقیاس ماکرو تا نانو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب سنتز، خصوصیات و کاربردهای فلزات متخلخل، متخلخل، نانومتخلخل، متخلخل، سلسله مراتبی، و سرامیک متخلخل را ارائه می دهد. تاکید ویژه بر تهیه مواد کربن فعال متخلخل و مواد مشتق از مایع یونی متخلخل برای کاهش انتشار CO2 داده شده است. علاوه بر این، یک فصل شامل مدل سازی فیزیکی و ریاضی در محیط های متخلخل است. بسیاری از تکنیک های تحلیلی برای شخصیت پردازی در این کتاب مورد بحث قرار گرفته است. همچنین، کاربردهای زیست پزشکی و صنعتی مواد متخلخل در جذب، کاتالیز، حسگرهای زیستی، دارورسانی، نانوتکنولوژی تشریح شده است. این محتوا به حل مسائل اساسی و کاربردی در مواد متخلخل با مقیاس های طولی متفاوت از سطح کلان تا نانو کمک می کند.
This book presents synthesis, characterization, and applications of macroporous, mesoporous, nanoporous, hierarchical porous, porous metals, and porous ceramics. Special emphasis is given to the preparation of porous activated carbon materials and porous ionic liquid-derived materials for CO2 emissions mitigation. Additionally, a chapter includes the physical and mathematical modeling in porous media. Many analytical techniques for characterization are discussed in this book. Also, the biomedical and industrial applications of porous materials in adsorption, catalysis, biosensors, drug delivery, nanotechnology are described. The content helps solving fundamental and applied problems in porous materials with length scales varying from macro- to nano-level.
Contents Contributors Fundamentals of Porous Materials 1 Introduction 2 Pores 2.1 Porosity 3 Classification of Porous Materials 3.1 Based on Pores Size 3.2 Based on Building Framework 3.3 Artificial Porous Materials 4 Applications of Porous Materials 5 Conclusion References Synthesis of Macro Porous Ceramic Materials 1 Introduction 2 Structural Characters of Porous Ceramic Materials 3 Synthesizing Method 3.1 Partial Sintering 3.2 Replica Template 3.3 Sacrificial Template 3.4 Direct Foaming 3.5 Advantages and Limitations of Partial Sintering, Replica Template, Sacrificial Template and Direct Foaming 4 Future Trends in Producing Porous Ceramics Components 5 Conclusion References Emulsion Templated Hierarchical Macroporous Polymers 1 Introduction 2 HIPE Formation and Structure of HIPEs 2.1 Stabilization of HIPEs 3 Polymerization Strategies for HIPEs 3.1 Chain-Growth Polymerization 3.2 Step-Growth Polymerization 3.3 Ring Opening Polymerization (ROP) 4 PolyHIPE Properties 5 PolyHIPE Applications 5.1 Adsorption/Separation/Filtration Processes 5.2 Tissue Engineering 5.3 Organic Reactions and Catalysis 5.4 Energy Storage 6 Conclusion References Characterization of Macroporous Materials 1 Introduction 2 Computerized X-Ray Tomography 3 Magnetic Resonance Imaging 4 Electron Microscopy 4.1 3D Electron Tomography (3DET) Technique 4.2 Dual-Beam Electron Microscope 5 Conclusions References Synthesis of Mesoporous Materials 1 Introduction 2 Properties of Mesoporous Materials 3 Preparation Methods of Mesoporous Materials 4 Template-Assisted Synthesis of OMMs 4.1 Preparation of OMMs by Soft-Templating Method 4.2 Preparation of OMMs by Hard-Templating Method 5 Template-Free Synthesis of OMMs 6 Doping in OMMs 7 Advantages and Limitations of Different Preparation Methods 8 Conclusion and Future Trends References Characterization of Mesoporous Materials 1 Introduction 2 Characterization of Mesoporous Materials 2.1 X-ray Diffraction (XRD) 2.2 Nitrogen Adsorption-Desorption 2.3 Transmission Electron Microscope (TEM) 2.4 Fourier Transform Infrared (FTIR) Spectroscopy 2.5 Thermogravimetric Analysis (TGA) 2.6 Energy Dispersive X-ray (EDX) 2.7 Differential Scanning Calorimetry (DSC) 2.8 Nuclear Magnetic Resonance (NMR) 3 Limitations of Techniques 4 Conclusion References Role of Mesoporous Silica Nanoparticles as Drug Carriers: Evaluation of Diverse Mesoporous Material Nanoparticles as Potential Host for Various Applications 1 Introduction 2 Chemistry and Synthesis of Mesoporous Material 3 Functionalization of Mesoporous Material 4 Methods of Drug Loading and Release of Drugs from MSNs 5 Mesoporous Material as a Potential Drug Carrier 6 Applicability of Mesoporous Material for Fast or Immediate Drug Delivery Systems 7 Applicability of Mesoporous Material for Sustained or Controlled Drug Delivery Systems 8 Mesoporous Nanotechnology Approaches for Infectious Diseases 9 Conclusion References Applications and Future Trends in Mesoporous Materials 1 Introduction 2 Energy Conversion and Storage 2.1 Rechargeable Batteries 2.2 Supercapacitors 2.3 Fuel Cells 2.4 Solar Cells 3 Carbon Capture 4 Filtration 5 Catalysis 6 Optics 7 Drug Delivery 8 Conclusion and Future Scope References Advanced Ordered Nanoporous Materials 1 Introduction 2 Zeolites 2.1 Structure and Physicochemical Properties 2.2 Zeolite Synthesis 2.3 Applications of Zeolites 3 Ordered Mesoporous Materials 3.1 Mesoporous Silica 3.2 Mesoporous Alumina 3.3 Mesoporous Metal/Metal Oxide 3.4 Mesoporous Carbon 4 Metal–Organic Frameworks (MOFs) 4.1 Structure and Physicochemical Properties 4.2 Synthesis Techniques 4.3 Applications 5 Covalent Organic Frameworks 5.1 Structure and Physicochemical Properties 5.2 Synthesis Techniques 5.3 Applications 6 Summary and Prospects References Characterization of Nanoporous Materials 1 Introduction 2 Crystalline Structure 2.1 Single Crystal and Powder XRD 2.2 Electron Crystallography 3 Oxidation State and Coordination 3.1 X-Ray Absorption Spectrum 3.2 X-Ray Photoelectron Spectrum 3.3 UV–Vis Spectra 3.4 Nuclear Magnetic Resonance (NMR) 4 Chemical Composition 5 Pore Analysis 6 Morphology: SEM 7 Pore Structure: TEM 8 Conclusions References Emerging Biomedical and Industrial Applications of Nanoporous Materials 1 Introduction 2 Nanobiomedicine Applications 2.1 Drug Delivery Systems (DDS) and Tissue Engineering 2.2 Bioseparation, Sorting and Analysis 2.3 Antifouling and Antibacterial Coatings 2.4 Microfluidic Bioassays and Organ-on-Chip Devices 2.5 Biosensors and Theranostic Devices 2.6 Flexible Bioelectronics and Biointerfaces 2.7 Future Horizon and Challenges 3 Industrial Applications 3.1 Chromatography and Filtration Applications 3.2 Photocatalytic and Adsorption Applications 3.3 Nanoreactors 3.4 Biosensing and Photonic Applications 3.5 Energy Harvesting and Storage Applications 3.6 Future Horizons and Challenges 4 Conclusion References Fundamentals of Hierarchically Porous Materials and Its Catalytic Applications 1 Introduction 2 Catalytic Applications of Hierarchical Porous Materials 2.1 Photocatalytic Materials 2.2 Fuel Chemistry 2.3 Valorisation of Biomass 2.4 Selective Organic Transformation Process 2.5 Pollution Abatement 3 Recent Studies in Hierarchical Porous Materials 4 Conclusion and Future Aspects on Hierarchical Porous Materials References Characterization of Hierarchical Porous Materials 1 Introduction 2 Characterization of Hierarchical Porous Materials by X-Ray Diffraction (XRD) 2.1 Oxide 2.2 Carbon 2.3 Metal 3 Characterization of Hierarchical Porous Materials by Scanning Electron Microscope (SEM) 3.1 Oxide 3.2 Polymer 3.3 Metal 4 Characterization of Hierarchical Porous Materials by Transmission Electron Microscope (TEM) 4.1 Oxide 4.2 Carbon 4.3 Ceramic 4.4 Polymer 5 Characterization of Hierarchical Porous Materials by Brunauer–Emmett–Teller (BET) 5.1 Oxide 5.2 Carbon 5.3 Polymer 6 Conclusion References Hierarchical Porous Zeolitic Imidazolate Frameworks: Microporous to Macroporous Regime 1 Introduction 2 Structure of ZIFs 3 Synthesis of ZIFs 3.1 Modulation-based Method 3.2 Template-based Method 3.3 Template-free Synthesis 3.4 Defect Formation 3.5 Freeze-drying and Supercritical Carbon Dioxide (CO2) 3.6 3D Printing Method 4 Characterization of Porosity 5 Conclusion References Porous Metals 1 Introduction 2 Types of Porous Metals 3 Fabrication of Porous Metals 3.1 Liquid-State Processing Routes 3.2 Solid-State Processing Route 3.3 Metal Deposition Methods 4 Properties of Porous Metals 4.1 Microstructure of Porous Metals 4.2 Mechanical Properties 4.3 Acoustic Properties 4.4 Thermal Properties 5 Applications of Porous Metals 5.1 Structural Applications 5.2 Functional Applications 6 Conclusion References Porous Ceramic Properties and Its Different Fabrication Process 1 Introduction 2 Classification of Porous Ceramics 2.1 Different Methods for Enhancing the Porosity of Porous Ceramic Materials 3 Fabrication of Porous Ceramics 3.1 Particle Stacking Sintering 3.2 Addition of Pore-Forming Agent 3.3 Polymeric Sponge Impregnation Process 3.4 Foaming Process 3.5 Sol–Gel Process 3.6 Other Processing Process of Porous Ceramics 4 Porous Ceramic Honeycombs 5 Porous Ceramic Composites 6 Conclusion References Application of Porous Ceramics 1 Introduction 2 Ion Exchange 2.1 As, Zn, Cd, Cs 2.2 Li+ 2.3 Na+ 2.4 NH4+ 2.5 O2− 3 Catalyst Carrier 4 Porous Electrodes and Membranes 4.1 Battery 4.2 Photo-Fenton 4.3 Fuel Cell 5 Filtration and Separation 5.1 Hot-Gas Filtration 5.2 Fluid Separation 5.3 Filtration of Molten Metals 5.4 Microfiltration 6 Functional Materials 6.1 Flexible Porous Ceramics 6.2 Dielectric, Ferroelectric, and Piezoelectric Effect 7 Combustion and Fire Retardance 7.1 Combustion 7.2 Fire Retardance 8 Conclusion and Future Trends References Electrospun Porous Biobased Polymer Mats for Biomedical Applications 1 Introduction 2 Electrospinning Process 2.1 Porous Nanofibers 2.2 Polymer Used in Nanofiber Fabrication 3 Biomedical Applications of Porous Biobased Polymer Mats 3.1 Tissue Engineering Applications 3.2 Drug Delivery 3.3 Wound Dressings 3.4 Cosmeceutical Applications 3.5 Other Applications 4 Future Insights and Challenges 5 Conclusion References Porous Ionic Liquid Derived Materials for CO2 Emissions Mitigation 1 Introduction 2 Organic Porous Materials 2.1 IL Grafted in Polymeric Supports 2.2 IPOP (Ionic Porous Organic Polymers) 2.3 Material Trends (MIP and Aerogel) 3 Hybrid or Crystalline Frameworks 3.1 Metal-Organic Frameworks (MOFs) 3.2 Zeolitic Imidazolate Frameworks (ZIFs) 3.3 Material Trends (COF) 4 Inorganic Supports 4.1 Silica 4.2 Zeolites 4.3 Material Trends (Carbon) 5 Conclusions and Outlook References Physical and Mathematical Modelling of Fluid and Heat Transport Phenomena in Porous Media 1 Introduction 2 Governing Parameters 2.1 Nusselt Number (Nu) 2.2 Rayleigh Number (Ra) 2.3 Richardson Number (Ri) 2.4 Grashof Number (Gr) 2.5 Reynolds Number (Re) 2.6 Hartmann Number (Ha) 2.7 Darcy Number (Da) 3 Heat Transfer of Nanofluids with Porous Media 4 Role of the Magnetic Force on Heat Transfer of Nanofluid with Porous Media 5 Heat Transfer of Hybrid Nanofluids with Porous Media 6 Conclusions and Outlook 7 Nomenclature and Symbols Used References