دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Saxena. Ashok
سری:
ISBN (شابک) : 9781138544260, 1138544264
ناشر: CRC Press, Taylor & Francis Group
سال نشر: 2019
تعداد صفحات: 325
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Advanced fracture mechanics and structural integrity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک شکست پیشرفته و یکپارچگی سازه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مکانیک شکست پیشرفته و یکپارچگی ساختاری برای پوشش توضیحات کمی از رشد ترک و پدیدههای شکست سازماندهی شده است. مکانیک شکست با تاکید بر مکانیک شکست الاستیک-پلاستیک و وابسته به زمان توضیح داده شده است. برنامهها با استفاده از نمونههایی از تولید برق، هوافضا، صنایع دریایی و شیمیایی با تمرکز بر پیشبینی عمر باقیمانده اجزای ساختاری و روشهای آزمایش پیشرفته برای مواد ساختاری ارائه شدهاند. مثالهای متعدد و مشکلات انتهای فصل به همراه منابعی برای تشویق مطالعه بیشتر ارائه شده است. این کتاب برای استفاده در دورههای تحصیلات تکمیلی پیشرفته در مکانیک شکست یا یکپارچگی سازه نوشته شده است.
Advanced Fracture Mechanics and Structural Integrity is organized to cover quantitative descriptions of crack growth and fracture phenomena. The mechanics of fracture are explained, emphasizing elastic-plastic and time-dependent fracture mechanics. Applications are presented, using examples from power generation, aerospace, marine, and chemical industries, with focus on predicting the remaining life of structural components and advanced testing metods for structural materials. Numerous examples and end-of-chapter problems are provided, along with references to encourage further study.The book is written for use in an advanced graduate course on fracture mechanics or structural integrity.
Cover Half Title Title Page Copyright Page Contents Preface Acknowledgments Author 1. Introduction and Review of Linear Elastic Fracture Mechanics 1.1 Why Nonlinear Fracture Mechanics 1.1.1 Failures in Reheat Steam Pipes 1.1.2 Failure of a Steam Turbine Rotor 1.1.3 Cracks in a Superheater Outlet Steam Header 1.1.4 Cracks in Ship’s Steam Turbine-Generator Casings 1.2 Review of LEFM 1.2.1 Basic Concepts 1.2.1.1 Energy Balance Approaches to Fracture 1.2.1.2 Stress Intensity Parameter Approach 1.2.1.3 The Equivalence of G and K 1.3 Crack Tip Plasticity 1.3.1 Irwin’s Plastic Zone Size Calculation 1.3.2 Relationship between K and Crack Tip Opening Displacement 1.3.3 Shape of the Plastic Zone 1.3.4 Strip Yield Model 1.4 Compliance Relationships 1.5 Fracture Toughness and Predicting Fracture in Components 1.5.1 Fracture under Plane Strain Conditions (Thick Sections) 1.5.2 Fracture in Thin Plates and Sheets 1.6 Subcritical Crack Growth 1.6.1 Fatigue Crack Growth 1.6.2 Environment-Assisted Cracking 1.6.3 Corrosion-Fatigue Crack Growth 1.7 Limitations of LEFM 1.8 Summary 1.9 References 1.10 Exercise Problems 2. Analysis of Cracks under Elastic–Plastic Conditions 2.1 Introduction 2.2 Rice’s J-Integral 2.2.1 Path-Independence of J-Integral 2.2.2 Relationship between J and Potential Energy 2.3 J-Integral, Crack Tip Stress Fields, and Crack Tip Opening Displacement 2.3.1 Relationship between J and Crack Tip Stress Fields 2.3.2 Relationship between J and CTOD 2.4 J-Integral as a Fracture Parameter and Its Limitations 2.4.1 J[sub(Ic)] and J–Δa Curves 2.4.2 Influence of Geometry and Deformation on J-Dominance 2.4.3 Hutchinson–Paris Condition for J-Dominated Crack Growth 2.5 Summary 2.6 References 2.7 Exercise Problems Appendix 2.1: Hutchinson, Rice, Rosengren (Hrr) Singular Field Quantities 3. Methods of Estimating J-Integral 3.1 Analytical Solutions 3.2 Determination of J in Test Specimens 3.2.1 Semi-Empirical Methods of Determining J 3.2.2 J for a Deep Edge Crack Specimen Subject to Pure Bending, SEC(B) 3.2.3 Merkle–Corten Analysis of a Compact Specimen 3.2.4 J for Center Crack Tension Geometry 3.3 J for Growing Cracks 3.4 Estimating J-Integral for Cracked Components 3.4.1 Elastic–Plastic Estimation Procedure 3.4.2 J-Solutions for Cracks in Infinite Bodies 3.5 Summary 3.6 References 3.7 Exercise Problems Appendix 3.1 4. Crack Growth Resistance Curves and Measures of Fracture Toughness 4.1 Fracture Parameters under Elastic–Plastic Loading 4.2 Experimental Methods for Determining Stable Crack Growth and Fracture 4.2.1 Overall Test Method 4.2.2 Test Specimen Geometries and Preparation 4.2.3 Loading Apparatus and Displacement Gauges 4.2.4 Crack Length Measurement 4.2.5 Final Loading of the Specimen and Post-test Measurements 4.2.6 Data Analysis and Qualification 4.3 Summary 4.4 References 4.5 Exercise Problems 5. Effects of Constraint on Fracture and Stable Crack Growth under Elastic–Plastic Loading 5.1 The Elastic T-Stress 5.2 The J–Q Approach 5.3 T–Q Relationship 5.4 Effects of Specimen Geometry on the J[sub(R)]-Curve 5.5 Comments on Predicting Instability in Structures 5.6 Summary 5.7 References 5.8 Exercise Problems 6. Microscopic Aspects of Fracture 6.1 Cleavage Fracture 6.1.1 Microscopic Aspects of Cleavage Fracture 6.1.2 Ritchie, Knott, and Rice Model for Cleavage Fracture 6.1.3 A Model for Describing Scatter in Cleavage Fracture Toughness 6.2 Ductile Fracture 6.2.1 Microscopic Aspects of Ductile Fracture 6.2.2 Models for Predicting the J[sub(R)]-Curve 6.3 Ductile–Brittle Transition 6.4 Summary 6.5 References 6.6 Exercise Problems 7. Fatigue Crack Growth under Large-Scale Plasticity 7.1 Crack Tip Cyclic Plasticity, Damage, and Crack Closure 7.1.1 Crack Tip Cyclic Plasticity 7.1.2 Crack Tip Damage 7.1.3 Crack Closure 7.2 ΔJ-Integral 7.2.1 Relationship between ΔJ and Crack Tip Stress Fields 7.2.2 Methods of Determining ΔJ 7.2.3 Limitations of ΔJ 7.3 Test Methods for Characterizing Fatigue Crack Growth Rates under Large Plasticity Conditions 7.4 Behavior of Small Fatigue Cracks 7.4.1 Limitations of LEFM for Characterizing Small Fatigue Crack Growth Behavior 7.4.2 Models for Predicting the Growth of Small Fatigue Cracks 7.5 Summary 7.6 References 7.7 Exercise Problems 8. Analysis of Cracks in Creeping Materials 8.1 Cracked Bodies Subjected to Creep Conditions 8.2 The C*-Integral 8.2.1 Energy Rate Interpretation of C* 8.2.2 Relationship between C*-Integral and the Crack Tip Stress Fields 8.2.3 Methods of Determining C* 8.2.4 Correlation between Creep Crack Growth Rates and C* 8.3 Analysis of Cracks under SSC and TC Conditions 8.3.1 Crack Tip Stress Fields in SSC 8.3.2 Estimation of the Creep Zone Size 8.3.3 Transition Time (t[sup(T)]) 8.3.4 C(t)—Integral and the Stress Fields in the TC Region 8.3.5 C[sup(t)] Parameter 8.4 Consideration of Primary Creep 8.4.1 Creep Constitutive Equation Including Primary Creep 8.4.2 Crack Tip Parameters for Extensive Primary Creep 8.4.3 Small-Scale Primary Creep 8.4.4 Primary and Secondary Creep 8.4.5 Transition from Small-Scale to Extensive Primary Creep 8.4.6 Elastic, Primary, and Secondary Creep Combined 8.5 Effects of Crack Growth on the Crack Tip Stress Fields 8.5.1 Effects of Crack Growth under Extensive Steady-State Creep 8.5.2 Crack Growth under SSC 8.6 Crack Growth in Creep-Brittle Materials 8.6.1 Steady-State Creep Crack Growth under SSC 8.6.2 Transient Crack Growth under SSC 8.7 Summary 8.8 References 8.9 Exercise Problems 9. Creep–Fatigue Crack Growth 9.1 Early Approaches for Characterizing Creep–Fatigue Crack Growth Behavior 9.1.1 LEFM Approaches 9.1.2 Limitations of the LEFM Approaches 9.2 Stress Analysis of Cracks Subjected to Cyclic Loading in the Presence of Creep Deformation 9.2.1 Crack Tip Stresses under Creep–Fatigue Loading 9.3 Crack Tip Parameters during Creep–Fatigue 9.4 Methods of Determining (C[sup(t)])[sup(avg)] 9.4.1 Methods for Determining (C[sup(t)])[sup(avg)] in Test Specimens 9.4.2 Analytical Methods of Determining (C[sup(t)])[sup(avg)] 9.4.2.1 (C[sup(t)])[sup(avg)] for Complete Creep Reversal 9.4.2.2 (C[sup(t)])[sup(avg)] for No Creep Reversal 9.4.2.3 (C[sup(t)])[sup(avg)] for Partial Creep Reversal 9.5 Experimental Methods for Characterizing Creep–Fatigue Crack Growth 9.6 Creep–Fatigue Crack Growth Models 9.6.1 Creep–Fatigue Crack Growth Rate Correlations 9.6.2 Models for Creep–Fatigue Crack Growth 9.6.3 Transients during Creep–Fatigue Crack Growth 9.7 Summary 9.8 References 9.9 Exercise Problems 10. Applications 10.1 Applications of Fracture Mechanics 10.1.1 Integrity Assessment of Structures and Components 10.1.2 Material and Process Selection 10.1.3 Design or Remaining Life Prediction 10.1.4 Inspection Criterion and Interval Determination 10.1.5 Failure Analysis 10.2 Fracture Mechanics Analysis Methodology 10.3 Case Studies 10.3.1 Integrity Analysis of Missile Launch Tubes 10.3.2 Integrity of Pipes in Nuclear Power Generating Stations 10.3.3 Analysis of a High-Temperature Rotor Failure 10.3.4 Integrity Analysis of Reheat Steam Pipes 10.4 Summary 10.5 References Index