دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Meinhard T. Schobeiri
سری:
ISBN (شابک) : 3030729249, 9783030729240
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 609
[602]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists: For Engineers and Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک سیالات پیشرفته و انتقال حرارت برای مهندسان و دانشمندان: برای مهندسان و دانشمندان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب فعلی، مکانیک سیالات پیشرفته و انتقال حرارت بر اساس چهار دهه تحقیقات صنعتی و دانشگاهی نویسنده در زمینه علوم ترموسیال شامل مکانیک سیالات، آیرو-ترمودینامیک، انتقال حرارت و کاربردهای آنها در سیستم های مهندسی است. مکانیک سیالات و انتقال حرارت بطور جدایی ناپذیری در هم تنیده شده اند و هر دو دو بخش جدایی ناپذیر یک رشته فیزیکی هستند. هیچ مشکلی از مکانیک سیالات که نیاز به محاسبه دما دارد را نمی توان تنها با استفاده از سیستم ناویر استوکس و معادلات پیوستگی حل کرد. در مقابل، هیچ مشکل انتقال حرارت را نمی توان با استفاده از معادله انرژی تنها بدون استفاده از معادلات ناویر-استوکس و تداوم حل کرد. وجود کتابی که این رشته فیزیکی را به عنوان موضوعی واحد در یک کتاب واحد که نیاز جامعه مهندسی و فیزیک را در نظر گرفته باشد، انگیزه نگارش این کتاب را برانگیخته است. این در درجه اول برای دانشجویان مهندسی، فیزیک و آن دسته از متخصصان حرفه ای است که وظایف طراحی انتقال حرارت هوا-گرما را در صنعت انجام می دهند و مایلند دانش خود را در این زمینه عمیق تر کنند. مطالب این کتاب جدید مطالب مورد نیاز در دوره های اصلی فارغ التحصیلی مکانیک سیالات و انتقال حرارت در دانشگاه های ایالات متحده را پوشش می دهد. همچنین بخشهای اصلی دورههای انتخابی سطح Ph.D، مکانیک سیالات پیشرفته و انتقال حرارت را که نویسنده در سه دهه گذشته در دانشگاه تگزاس A&M تدریس کرده است، پوشش میدهد.
The current book, Advanced Fluid Mechanics and Heat Transfer is based on author's four decades of industrial and academic research in the area of thermofluid sciences including fluid mechanics, aero-thermodynamics, heat transfer and their applications to engineering systems. Fluid mechanics and heat transfer are inextricably intertwined and both are two integral parts of one physical discipline. No problem from fluid mechanics that requires the calculation of the temperature can be solved using the system of Navier-Stokes and continuity equations only. Conversely, no heat transfer problem can be solved using the energy equation only without using the Navier-Stokes and continuity equations. The fact that there is no book treating this physical discipline as a unified subject in a single book that considers the need of the engineering and physics community, motivated the author to write this book. It is primarily aimed at students of engineering, physics and those practicing professionals who perform aero-thermo-heat transfer design tasks in the industry and would like to deepen their knowledge in this area. The contents of this new book covers the material required in Fluid Mechanics and Heat Transfer Graduate Core Courses in the US universities. It also covers the major parts of the Ph.D-level elective courses Advanced Fluid Mechanics and Heat Transfer that the author has been teaching at Texas A&M University for the past three decades.
Preface Contents Nomenclature Symbols Greek Symbols, Operators Subscripts, Superscripts 1 Introduction 1.1 Continuum Hypothesis 1.2 Molecular Viscosity 1.3 Flow Classification 1.3.1 Velocity Pattern: Laminar, Intermittent, Turbulent Flow 1.3.2 Change of Density, Incompressible, Compressible Flow 1.3.3 Statistically Steady Flow, Unsteady Flow 1.4 Shear-Deformation Behavior of Fluids 2 Vector and Tensor Analysis, Applications to Fluid Mechanics 2.1 Tensors in Three-Dimensional Euclidean Space 2.1.1 Index Notation 2.2 Vector Operations: Scalar, Vector and Tensor Products 2.2.1 Scalar Product 2.2.2 Vector or Cross Product 2.2.3 Tensor Product 2.3 Contraction of Tensors 2.4 Differential Operators in Fluid Mechanics 2.4.1 Substantial Derivatives 2.4.2 Differential Operator 2.5 Operator Applied to Different Functions 2.5.1 Scalar Product of and V 2.5.2 Vector Product 2.5.3 Tensor Product of and V 2.5.4 Scalar Product of and a Second Order Tensor 2.5.5 Eigenvalue and Eigenvector of a Second Order Tensor 2.6 Problems 3 Kinematics of Fluid Motion 3.1 Material and Spatial Description of the Flow Field 3.1.1 Material Description 3.1.2 Jacobian Transformation Function and its Material Derivative 3.1.3 Velocity, Acceleration of Material Points 3.1.4 Spatial Description 3.2 Translation, Deformation, Rotation 3.3 Reynolds Transport Theorem 3.4 Pathline, Streamline, Streakline 3.5 Problems 4 Differential Balances in Fluid Mechanics 4.1 Mass Flow Balance in Stationary Frame of Reference 4.1.1 Incompressibility Condition 4.2 Differential Momentum Balance in Stationary Frame of Reference 4.2.1 Relationship Between Stress Tensor and Deformation Tensor 4.2.2 Navier-Stokes Equation of Motion 4.2.3 Special Case: Euler Equation of Motion 4.3 Some Discussions on Navier-Stokes Equations 4.4 Energy Balance in Stationary Frame of Reference to Fluid Mechanics 4.4.1 Mechanical Energy 4.4.2 Thermal Energy Balance 4.4.3 Total Energy 4.4.4 Entropy Balance 4.5 Differential Balances in Rotating Frame of Reference 4.5.1 Velocity and Acceleration in Rotating Frame 4.5.2 Continuity Equation in Rotating Frame of Reference 4.5.3 Equation of Motion in Rotating Frame of Reference 4.5.4 Energy Equation in Rotating Frame of Reference 4.6 Problems 5 Integral Balances in Fluid Mechanics 5.1 Mass Flow Balance 5.2 Balance of Linear Momentum 5.3 Balance of Moment of Momentum 5.4 Balance of Energy 5.4.1 Energy Balance Special Case 1: Steady Flow 5.4.2 Energy Balance Special Case 2: Steady Flow, Constant Mass Flow 5.5 Application of Energy Balance to Engineering Components and Systems 5.5.1 Application: Pipe, Diffuser, Nozzle 5.5.2 Application: Combustion Chamber 5.5.3 Application: Turbo-shafts, Energy Extraction, Consumption 5.6 Irreversibility, Entropy Increase, Total Pressure Loss 5.6.1 Application of Second Law to Engineering Components 5.7 Theory of Thermal Turbomachinery Stages 5.7.1 Energy Transfer in Turbomachinery Stages 5.7.2 Energy Transfer in Relative Systems 5.7.3 Unified Treatment of Turbine and Compressor Stages 5.8 Dimensionless Stage Parameters 5.8.1 Simple Radial Equilibrium to Determine r 5.8.2 Effect of Degree of Reaction on the Stage Configuration 5.8.3 Effect of Stage Load Coefficient on Stage Power 5.9 Unified Description of a Turbomachinery Stage 5.9.1 Unified Description of Stage with Constant Mean Diameter 5.10 Turbine and Compressor Cascade Flow Forces 5.10.1 Blade Force in an Inviscid Flow Field 5.10.2 Blade Forces in a Viscous Flow Field 5.10.3 Effect of Solidity on Blade Profile Losses 5.11 Problems, Project 6 Inviscid Potential Flows 6.1 Incompressible Potential Flows 6.2 Complex Potential for Plane Flows 6.2.1 Elements of Potential Flow 6.3 Superposition of Potential Flow Elements 6.3.1 Superposition of a Uniform Flow and a Source 6.3.2 Superposition of a Translational Flow and a Dipole 6.3.3 Superposition of a Translational Flow, a Dipole and a Vortex 6.3.4 Superposition of a Uniform Flow, Source, and Sink 6.3.5 Superposition of a Source and a Vortex 6.3.6 Blasius Theorem 6.4 Kutta-Joukowski Theorem 6.5 Conformal Transformation 6.5.1 Conformal Transformation, Basic Principles 6.5.2 Kutta-Joukowsky Transformation 6.5.3 Joukowsky Transformation 6.6 Vortex Theorems 6.6.1 Thomson Theorem 6.6.2 Generation of Circulation 6.6.3 Helmholtz Theorems 6.6.4 Induced Velocity Field, Law of Bio-Savart 6.6.5 Induced Drag Force 6.7 Problems 7 Viscous Laminar Flow 7.1 Steady Viscous Flow Through a Curved Channel 7.1.1 Case I: Conservation Laws 7.1.2 Case I: Solution of the Navier-Stokes Equation 7.1.3 Case I: Curved Channel, Negative Pressure Gradient 7.1.4 Case I: Curved Channel, Positive Pressure Gradient 7.1.5 Case II: Radial Flow, Positive Pressure Gradient 7.2 Temperature Distribution 7.2.1 Case I: Solution of Energy Equation 7.2.2 Case I: Curved Channel, Negative Pressure Gradient 7.2.3 Case I: Curved Channel, Positive Pressure Gradient 7.2.4 Case II: Radial Flow, Positive Pressure Gradient 7.3 Steady Parallel Flows 7.3.1 Couette Flow Between Two Parallel Walls 7.3.2 Couette Flow Between Two Concentric Cylinders 7.3.3 Hagen-Poiseuille Flow 7.4 Unsteady Laminar Flows 7.4.1 Flow Near Oscillating Flat Plate, Stokes-Rayleigh Problem 7.4.2 Influence of Viscosity on Vortex Decay 7.5 Problems 8 Laminar-Turbulent Transition 8.1 Stability of Laminar Flow 8.2 Laminar-Turbulent Transition 8.3 Stability of Laminar Flows 8.3.1 Stability of Small Disturbances 8.3.2 The Orr-Sommerfeld Stability Equation 8.3.3 Orr-Sommerfeld Eigenvalue Problem 8.3.4 Solution of Orr-Sommerfeld Equation 8.3.5 Numerical Results 8.4 Physics of an Intermittent Flow, Transition 8.4.1 Identification of Intermittent Behavior of Statistically Steady Flows 8.4.2 Turbulent/Non-turbulent Decisions 8.4.3 Intermittency Modeling for Steady Flow at Zero Pressure Gradient 8.4.4 Identification of Intermittent Behavior of Periodic Unsteady Flows 8.4.5 Intermittency Modeling for Periodic Unsteady Flow 8.5 Implementation of Intermittency into Navier Stokes Equations 8.5.1 Reynolds-Averaged Equations for Fully Turbulent Flow 8.5.2 Intermittency Implementation in RANS 8.6 Problems and Projects 9 Turbulent Flow, Modeling 9.1 Fundamentals of Turbulent Flows 9.1.1 Type of Turbulence 9.1.2 Correlations, Length and Time Scales 9.1.3 Spectral Representation of Turbulent Flows 9.1.4 Spectral Tensor, Energy Spectral Function 9.2 Averaging Fundamental Equations of Turbulent Flow 9.2.1 Averaging Conservation Equations 9.2.2 Equation of Turbulence Kinetic Energy 9.2.3 Equation of Dissipation of Kinetic Energy 9.3 Turbulence Modeling 9.3.1 Algebraic Model: Prandtl Mixing Length Hypothesis 9.3.2 Algebraic Model: Cebeci–Smith Model 9.3.3 Baldwin–Lomax Algebraic Model 9.3.4 One-Equation Model by Prandtl 9.3.5 Two-Equation Models 9.4 Grid Turbulence 9.5 Numerical Simulation Examples 9.5.1 Examples of Steady Flow Simulations with Two-Equation Models 9.5.2 Case Study: Flow Simulation in a Rotating Turbine 9.5.3 Results, Discussion 9.5.4 RANS-Shortcomings, Closing Remark 9.6 Problems and Projects 10 Free Turbulent Flow 10.1 Types of Free Turbulent Flows 10.2 Fundamental Equations of Free Turbulent Flows 10.3 Free Turbulent Flows at Zero-Pressure Gradient 10.3.1 Plane Free Jet Flows 10.3.2 Straight Wake at Zero Pressure Gradient 10.3.3 Free Jet Boundary 10.4 Wake Flow at Non-zero Lateral Pressure Gradient 10.4.1 Wake Flow in Engineering, Applications, General Remarks 10.4.2 Theoretical Concept, an Inductive Approach 10.4.3 Nondimensional Parameters 10.4.4 Near Wake, Far Wake Regions 10.4.5 Utilizing the Wake Characteristics 10.5 Computational Projects 11 Boundary Layer Aerodynamics 11.1 Boundary Layer Approximations 11.2 Exact Solutions of Laminar Boundary Layer Equations 11.2.1 Laminar Boundary Layer, Flat Plate 11.2.2 Wedge Flows 11.2.3 Polhausen Approximate Solution 11.3 Boundary Layer Theory Integral Method 11.3.1 Boundary Layer Thicknesses 11.3.2 Boundary Layer Integral Equation 11.4 Turbulent Boundary Layers 11.4.1 Universal Wall Functions 11.4.2 Velocity Defect Function 11.5 Boundary Layer, Differential Treatment 11.5.1 Solution of Boundary Layer Equations 11.6 Measurement of Boundary Layer Flow 11.7 Design Facilities for Boundary Layer Research 11.7.1 Facilities for Boundary Layer Research in Stationary Frame 11.7.2 Facilities for Boundary Layer Research in Rotating Frame 11.8 Instrumentation and Data Acquisition 11.8.1 How to Measure Boundary Layer Velocity with HWA 11.8.2 HWA Averaging, Sampling Data 11.8.3 Data Sampling Rate 11.9 Experimental Verification, Steady Flow 11.10 Case Studies 11.10.1 Case Study 1: Curved Test Section 11.10.2 Unsteady Turbulence Activities, Calm Regions 11.11 Case Study 2: Aircraft Engine 11.11.1 Parameter Variations, General Remarks 11.11.2 Flow Unsteadiness: Kinematics of Periodic Wakes 11.11.3 Variation of Pressure Gradient 11.11.4 Velocity Distribution 11.11.5 Velocity and Its Fluctuations 11.11.6 Time Averaged Velocity, Unsteadiness 11.11.7 Time Averaged Fluctuation, Unsteadiness 11.11.8 Combined Effects of Wakes and Turbulence 11.11.9 Impact of Wake Frequency on Flow Separation 11.11.10 Dynamics of Separation Bubbles 11.11.11 Variation of Tu 11.11.12 Variation of Tu at Constant Wake Frequency 11.11.13 Quantifying the Combined Effects on Aerodynamics 11.12 Numerical Simulation 12 Boundary Layer Heat Transfer 12.1 Introduction 12.2 Equations for Heat Transfer Calculation 12.3 Instrumentation for Temperature Measurement 12.4 Heat Transfer Calculation Procedures 12.5 Experimental Heat Transfer 12.6 Local Heat Transfer Coefficient Distribution on Concave Surface 12.6.1 Heat Transfer Coefficient Distribution 12.7 Case Study, Heat Transfer 12.8 Boundary Layer Parameters 12.8.1 Parameter Variation at Steady Inlet Flow Condition 12.8.2 Parameter Variation at Unsteady Inlet Flow Condition 12.9 Temperature Measurement in Rotating Frame 12.9.1 PSP: Working Principle, Calibration 12.10 Case Studies, Heat Transfer in Rotating Frame 12.10.1 Rotating Heat Transfer, Case I 12.10.2 Rotating Heat Transfer, Case II 12.10.3 Rotating Heat Transfer, Case III 13 Compressible Flow 13.1 Steady Compressible Flow 13.1.1 Speed of Sound, Mach Number 13.1.2 Fluid Density, Mach Number, Critical State 13.1.3 Effect of Cross-Section Change on Mach Number 13.1.4 Supersonic Flow 13.2 Unsteady Compressible Flow 13.2.1 One-Dimensional Approximation 13.3 Numerical Treatment 13.3.1 Unsteady Compressible Flow: Example: Shock Tube 13.3.2 Shock Tube Dynamic Behavior 13.4 Problems and Projects 14 Flow Measurement Techniques, Calibration 14.1 Measurement of Time Dependent Flow Field Using HWA 14.1.1 Probe Type, Wire, Film Arrangements 14.1.2 Energy Balance of HW Probes 14.1.3 Heat Transfer of HW Probes 14.1.4 Calibration Facility 14.1.5 Calibration of Single Hot Wire Probes 14.1.6 Calibration of Single Hot Wire Probes 14.2 Measurement of Time Averaged Flow Quantities Using Five-Hole Probes 14.2.1 Flow Field Measurement Using Five Hole Probes 14.2.2 Calibration Procedure of Five-Hole Probes 15 Heat Transfer 15.1 Heat Transfer Measurement, Calibration 15.1.1 Infrared Thermal Imaging 15.1.2 Film Cooling Effectiveness Measurement with Infrared Camera 15.1.3 Film Cooling Effectiveness 15.1.4 Working Principle of IR-Thermography 15.2 Temperature Measurement Using LC 15.2.1 Working Principle of Liquid Crystals 15.2.2 Calibration of Liquid Crystals 15.2.3 How to Measure Surface Temperature with LC 15.2.4 Case Studies with LC-Measurement 15.2.5 Flat Plate LC Cover 15.2.6 Curved Plate Exposed to a Periodic Unsteady Flow 15.2.7 Curved Plate Concave Side Heat Transfer 15.2.8 Curved Plate Convex Side Heat Transfer 15.2.9 Turbine Blade 15.3 Boundary Layer Parameters 15.3.1 Parameter Variation at Steady Inlet Flow Condition 15.3.2 Parameter Variation at Unsteady Inlet Flow Condition 15.4 Temperature Measurement in Rotating Frame 15.5 Case Studies, Heat Transfer in Rotating Frame 15.5.1 Rotating Heat Transfer, Case I 15.5.2 Rotating Heat Transfer, Case II 15.5.3 Rotating Heat Transfer, Case III Appendix A Tensor Operations in Orthogonal Curvilinear Coordinate Systems A.1 Change of Coordinate System A.2 Co- and Contravariant Base Vectors, Metric Coefficients A.3 Physical Components of a Vector A.4 Derivatives of the Base Vectors, Christoffel Symbols A.5 Spatial Derivatives in Curvilinear Coordinate System A.5.1 Application of to Tensor Functions A.6 Application Example 1: Inviscid Incompressible Flow Motion A.6.1 Equation of Motion in Curvilinear Coordinate Systems A.6.2 Special Case: Cylindrical Coordinate System A.6.3 Base Vectors, Metric Coefficients A.6.4 Christoffel Symbols A.6.5 Introduction of Physical Components A.7 Application Example 2: Viscous Flow Motion A.7.1 Equation of Motion in Curvilinear Coordinate Systems A.7.2 Special Case: Cylindrical Coordinate System Appendix B Physical Properties of Dry Air Appendix References Index