دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ser-Huang Poon
سری:
ISBN (شابک) : 9789814460378, 9814460370
ناشر:
سال نشر: 2018
تعداد صفحات: 226
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Advanced finance theories به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری های مالی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface About the Author Acknowledgements Note for PhD Students 1 Utility Theory 1.1 Risk Aversion and Certainty Equivalent 2 Pricing Kernel and Stochastic Discount Factor 2.1 Arrow–Debreu State Prices 2.1.1 The pricing kernel, φi 2.1.2 Equilibrium model 2.2 Cochrane Two-period Consumption Problem 2.2.1 Stochastic discount factor 2.2.2 Further notation 2.2.3 Risk-free rate 2.2.4 Risk corrections 2.2.5 Idiosyncratic risk does not affect prices 2.3 Expected Return-Beta Representation 3 Risk Measures 3.1 One-period Portfolio Selection 3.2 Rothschild and Stiglitz “Strict” Risk Aversion 3.2.1 Efficient portfolio 3.2.2 Portfolio analysis 3.3 Merton’s Risk Measures 3.3.1 Properties of Merton’s risk measure bp 3.3.2 Relationship between bp and conditional expected return E[Zp|Ze] 3.3.3 Discussion Exercises: Capital Market Theory, Risk Measures 4 Consumption and Portfolio Selection 4.1 Basic Set-up 4.2 One Risky and One Risk-Free Asset 4.2.1 The Bellman equation 4.2.2 Infinite time horizon 4.3 Constant Relative Risk Aversion 4.3.1 Solution for J 4.3.2 Solution for C and w 4.3.3 Economic interpretation 4.4 Constant Absolute Risk Aversion 4.4.1 Solve for J 4.4.2 Solve for C* and w* 4.4.3 Economic interpretation 4.5 Hyperbolic Absolute Risk Aversion (HARA) 4.5.1 Relationship with CRRA and CARA 4.5.2 Portfolio choice 4.5.3 Solution for J 4.5.4 Solve for C* and w* 4.6 Optimal Rules Under Finite Horizon 4.6.1 CRRA with finite horizon 4.6.2 CARA with finite horizon Exercises: Intertemporal Portfolio Section 5 Optimum Demand and Mutual Fund Theorem 5.1 Asset Dynamics and the Budget Equation 5.2 The Equation of Optimality 5.3 Optimal Investment Weight and Special Cases 5.3.1 No risk-free asset 5.3.2 GBM and risk-free rate 5.3.3 Economic interpretation 5.4 Lognormality and Mutual Fund Theorem 5.4.1 “Separation” or “mutual-fund” theorem 5.4.2 Key assumptions and uniqueness 5.4.3 Tobin–Markowitz separation theorem Exercises: Optimum Demand and Mutual Fund Separation 6 Mean–Variance Frontier 6.1 Mean–Variance Frontier 6.1.1 The Sharpe ratio 6.1.2 Calculating the mean–variance frontier 6.1.3 Decomposing the mean–variance frontier 6.1.4 Spanning the frontier 6.1.5 Hansen–Jagannathan bounds 7 Solving Black–Scholes with Fourier Transform 7.1 Option Pricing with Fourier Transform 7.1.1 Black–Scholes hedge portfolio 7.2 Black–Scholes Fundamental PDE 7.2.1 Fourier transform 7.2.2 Solution through transform method 8 Capital Structure Theory 8.1 Objective Function for the Firm 8.2 Partial Equilibrium One-period Model 8.2.1 Pricing kernel 8.2.2 Probability-cum-utility function 8.2.3 m assets 8.2.4 Introducing the concept of dQ 8.2.5 What is eητ? 8.3 Payoff of Risky Debt 8.4 Pricing Risky Debt 8.4.1 Solving the FPDE 8.5 Price of a Warrant 8.6 Convertible Bond 8.6.1 Reverse convertible 8.6.2 Call option enhanced reverse convertible 8.6.3 Policy implications 8.7 Bankruptcy Cost and Tax Benefit 8.7.1 Solution under time invariant 8.7.2 Protected debt covenant 8.7.3 Optimal capital structure 8.8 Deposit Insurance Exercises: Capital Structure Theory 9 General Equilibrium 9.1 Firms and Securities 9.2 Individuals 9.3 Aggregate Demand 9.4 Market Portfolio 9.5 Security Market Line 9.6 Three-fund Separation 9.7 Empirical Application of CAPM Exercises: General Equilibrium 10 Discontinuity in Continuous Time 10.1 Counting and Marked Point Process 10.2 Poisson Process 10.3 Constant Jump Size 10.3.1 Fundamental PDE with constant jump size 10.3.2 Market price of jump risk 10.3.3 European call price 10.3.4 Immediate ruin 10.4 Random Jump Size 10.4.1 When J has a lognormal distribution 10.5 Intertemporal Portfolio Selection with Jumps 10.5.1 Portfolio selection 10.5.2 Stock markets systemic and idiosyncratic risk Exercises: Discontinuity in Continuous Time 11 Spanning and Capital Market Theories 11.1 Necessary Conditions for Non-trivial Spanning 11.2 Efficient Portfolio and Spanning 11.3 Market Portfolio Spanning and CAPM 11.4 Arbitrage Pricing Theory (APT) 11.5 Modigliani–Miller Hypothesis 11.6 Comment on Spanning 11.7 HARA Exercises: Spanning & Capital Market Theories Bibliography Calculus Notes Differentiation Integration Integral of Normally Distributed Variable Ito lemma Index