دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [5 ed.] نویسندگان: Dennis Zill &, Warren Wright سری: ناشر: سال نشر: 2014 تعداد صفحات: 1023 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 91 Mb
در صورت تبدیل فایل کتاب Advanced Engineering Mathematics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات مهندسی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Copyright Page CONTENTS Preface PART 1 - Ordinary Differential Equations CHAPTER 1 Introduction to Differential Equations Outline & Intro 1.1 Definitions and Terminology 1.2 Initial-Value Problems 1.3 Differential Equations as Mathematical Models Review CHAPTER 2 First-Order Differential Equations Outline & Intro 2.1 Solution Curves Without a Solution 2.2 Separable Equations 2.3 Linear Equations 2.4 Exact Equations 2.5 Solutions by Substitutions 2.6 A Numerical Method 2.7 Linear Models 2.8 Nonlinear Models 2.9 Modeling with Systems of First-Order DEs Review Contributed Problems CHAPTER 3 Higher-Order Differential Equations Outline & Intro 3.1 Theory of Linear Equations 3.2 Reduction of Order 3.3 Homogeneous Linear Equations with Constant Coefficients 3.4 Undetermined Coefficients 3.5 Variation of Parameters 3.6 Cauchy-Euler Equations 3.7 Nonlinear Equations 3.8 Linear Models: Initial-Value Problems 3.9 Linear Models: Boundary-Value Problems 3.10 Green's Functions 3.11 Nonlinear Models 3.12 Solving Systems of Linear Equations Review Contributed Problems CHAPTER 4 The Laplace Transform Outline & Intro 4.1 Definition of the Laplace Transform 4.2 The Inverse Transform and Transforms of Derivatives 4.3 Translation Theorems 4.4 Additional Operational Properties 4.5 The Dirac Delta Function 4.6 Systems of Linear Differential Equations Review CHAPTER 5 Series Solutions of Linear Differential Equations Outline & Intro 5.1 Solutions about Ordinary Points 5.2 Solutions about Singular Points 5.3 Special Functions Review CHAPTER 6 Numerical Solutions of Ordinary Differential Equations Outline & Intro 6.1 Euler Methods and Error Analysis 6.2 Runge-Kutta Methods 6.3 Multistep Methods 6.4 Higher-Order Equations and Systems 6.5 Second-Order Boundary-Value Problems Review PART 2 - Vectors, Matrices, and Vector Calculus CHAPTER 7 Vectors Outline & Intro 7 .1 Vectors in 2-Space 7 .2 Vectors in 3-Space 7 .3 Dot Product 7 .4 Cross Product 7.5 Lines and Planes in 3-Space 7 .6 Vector Spaces 7.7 Gram-Schmidt Orthogonalization Process Review CHAPTER 8 Matrices Outline & Intro 8.1 Matrix Algebra 8.2 Systems of Linear Algebraic Equations 8.3 Rank of a Matrix 8.4 Determinants 8.5 Properties of Determinants 8.6 Inverse of a Matrix 8.7 Cramer's Rule 8.8 The Eigenvalue Problem 8.9 Powers of Matrices 8.10 Orthogonal Matrices 8.11 Approximation of Eigenvalues 8.12 Diagonalization 8.13 LU-Factorization 8.14 Cryptography 8.15 An Error-Correcting Code 8.16 Method of Least Squares 8.17 Discrete Compartmental Models Review CHAPTER 9 Vector Calculus Outline & Intro 9.1 Vector Functions 9.2 Motion on a Curve 9.3 Curvature and Components of Acceleration 9.4 Partial Derivatives 9.5 Directional Derivative 9.6 Tangent Planes and Normal Lines 9.7 Curl and Divergence 9.8 Line Integrals 9.9 Independence of the Path 9.10 Double Integrals 9.11 Double Integrals in Polar Coordinates 9.12 Green's Theorem 9.13 Surface Integrals 9.14 Stokes' Theorem 9.15 Triple Integrals 9.16 Divergence Theorem 9.17 Change of Variables in Multiple Integrals Review PART 3 - Systems of Differential Equations CHAPTER 10 Systems of Linear Differential Equations Outline & Intro 10.1 Theory of Linear Systems 10.2 Homogeneous Linear Systems 10.3 Solution by Diagonalization 10.4 Nonhomogeneous Linear Systems 10.5 Matrix Exponential Review CHAPTER 11 Systems of Nonlinear Differential Equations Outline & Intro 11.1 Autonomous Systems 11.2 Stability of Linear Systems 11.3 Linearization and Local Stability 11.4 Autonomous Systems as Mathematical Models 11.5 Periodic Solutions, Limit Cycles, and Global Stability Review PART 4 - Partial Differential Equations CHAPTER 12 Orthogonal Functions and Fourier Series Outline & Intro 12.1 Orthogonal Functions 12.2 Fourier Series 12.3 Fourier Cosine and Sine Series 12.4 Complex Fourier Series 12.5 Sturm-Liouville Problem 12.6 Bessel and Legendre Series Review CHAPTER 13 Boundary-Value Problems in Rectangular Coordinates Outline & Intro 13.1 Separable Partial Differential Equations 13.2 Classical PDEs and Boundary-Value Problems 13.3 Heat Equation 13.4 Wave Equation 13.5 Laplace's Equation 13.6 Nonhomogeneous BVPs 13. 7 Orthogonal Series Expansions 13.8 Fourier Series in Two Variables Review CHAPTER 14 Boundary-Value Problems in Other Coordinate Systems Outline & Intro 14.1 Problems in Polar Coordinates 14.2 Problems in Cylindrical Coordinates 14.3 Problems in Spherical Coordinates Review CHAPTER 15 Integral Transform Method Outline & Intro 15.1 Error Function 15.2 Applications of the Laplace Transform 15.3 Fourier Integral 15.4 Fourier Transforms 15.5 Fast Fourier Transform Review CHAPTER 16 Numerical Solutions of Partial Differential Equations Outline & Intro 16.1 Laplace's Equation 16.2 The Heat Equation 16.3 The Wave Equation Review PART 5 - Complex Analysis CHAPTER 17 Functions of a Complex Variable Outline & Intro 17.1 Complex Numbers 17.2 Powers and Roots 17.3 Sets in the Complex Plane 17.4 Functions of a Complex Variable 17.5 Cauchy-Riemann Equations 17.6 Exponential and Logarithmic Functions 17. 7 Trigonometric and Hyperbolic Functions 17.8 Inverse Trigonometric and Hyperbolic Functions Review CHAPTER 18 Integration in the Complex Plane Outline & Intro 18.1 Contour Integrals 18.2 Cauchy-Goursat Theorem 18.3 Independence of the Path 18.4 Cauchy's Integral Formulas Review CHAPTER 19 Series and Residues Outline & Intro 19.1 Sequences and Series 19.2 Taylor Series 19.3 Laurent Series 19.4 Zeros and Poles 19.5 Residues and Residue Theorem 19.6 Evaluation of Real Integrals Review CHAPTER 20 Conformal Mappings Outline & Intro 20.1 Complex Functions as Mappings 20.2 Conformal Mappings 20.3 Linear Fractional Transformations 20.4 Schwarz-Christoffel Transformations 20.5 Poisson Integral Formulas 20.6 Applications Review APPENDICES I. Derivative and Integral Formulas II. Gamma Function III. Table of Laplace Transforms IV. Conformal Mappings ANSWERS to Selected Odd-Numbered Problems ch01 ch02 ch03 ch04 ch05 ch06 ch07 ch08 ch09 ch10 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 appII INDEX A B C D E F G-H I J-K-L M N O P Q R S T U V W X Y-Z Credits Table of Laplace Transforms Errata