دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پایگاه داده ها ویرایش: نویسندگان: Wai Tak Wong سری: ISBN (شابک) : 1789957753, 9781789957754 ناشر: Packt Publishing سال نشر: 2019 تعداد صفحات: 538 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 74 مگابایت
در صورت تبدیل فایل کتاب Advanced Elasticsearch 7.0: A practical guide to designing, indexing, and querying advanced distributed search engines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Advanced Elasticsearch 7.0: راهنمای عملی برای طراحی، نمایه سازی و جستجو در موتورهای جستجوی پیشرفته توزیع شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ایجاد برنامه های کاربردی توزیع شده در سطح سازمانی و اجرای عملیات جستجوی سیستماتیک نیاز به درک قوی از Elasticsearch و تخصص در استفاده از API های اصلی و آخرین ویژگی های آن دارد. این کتاب به شما کمک میکند تا بر عملکردهای پیشرفته Elasticsearch تسلط پیدا کنید و بفهمید که چگونه میتوانید یک موتور جستجوی پیشرفته و بیدرنگ را با اطمینان توسعه دهید. علاوه بر این، شما همچنین یاد خواهید گرفت که کارهای یادگیری ماشینی را در Elasticsearch برای سرعت بخشیدن به کارهای روتین اجرا کنید. شما با یادگیری استفاده از ویژگیهای Elasticsearch در Hadoop و Spark و سریعتر کردن نتایج جستجو و در نتیجه بهبود سرعت نتایج جستجو و افزایش تجربه مشتری، شروع به کار خواهید کرد. سپس با ایجاد خط لوله معیارها، تعریف پرس و جوها و استفاده از Kibana برای تجسم های بصری که به تصمیم گیرندگان بینش بهتری ارائه می دهد، به سرعت در انجام تجزیه و تحلیل خواهید رسید. این کتاب بعداً شما را در استفاده از Logstash با مثالهایی برای جمعآوری، تجزیه و غنیسازی لاگها قبل از نمایهسازی آنها در Elasticsearch راهنمایی میکند. در پایان این کتاب، دانش جامعی از موضوعات پیشرفته ای مانند پشتیبانی Apache Spark، یادگیری ماشین با استفاده از Elasticsearch و scikit-learn و تجزیه و تحلیل بلادرنگ، همراه با تخصص مورد نیاز برای افزایش بهره وری کسب و کار، انجام تجزیه و تحلیل، خواهید داشت. و بهترین بهره را از Elasticsearch ببرید.
Building enterprise-grade distributed applications and executing systematic search operations call for a strong understanding of Elasticsearch and expertise in using its core APIs and latest features. This book will help you master the advanced functionalities of Elasticsearch and understand how you can develop a sophisticated, real-time search engine confidently. In addition to this, you'll also learn to run machine learning jobs in Elasticsearch to speed up routine tasks. You'll get started by learning to use Elasticsearch features on Hadoop and Spark and make search results faster, thereby improving the speed of query results and enhancing the customer experience. You'll then get up to speed with performing analytics by building a metrics pipeline, defining queries, and using Kibana for intuitive visualizations that help provide decision-makers with better insights. The book will later guide you through using Logstash with examples to collect, parse, and enrich logs before indexing them in Elasticsearch. By the end of this book, you will have comprehensive knowledge of advanced topics such as Apache Spark support, machine learning using Elasticsearch and scikit-learn, and real-time analytics, along with the expertise you need to increase business productivity, perform analytics, and get the very best out of Elasticsearch.
Cover Title Page Copyright and Credits Dedication About Packt Contributors Table of Contents Preface Section 1: Fundamentals and Core APIs Chapter 1: Overview of Elasticsearch 7 Preparing your environment Running Elasticsearch Basic Elasticsearch configuration Important system configuration Talking to Elasticsearch Using Postman to work with the Elasticsearch REST API Elasticsearch architectural overview Elastic Stack architecture Elasticsearch architecture Between the Elasticsearch index and the Lucene index Key concepts Mapping concepts across SQL and Elasticsearch Mapping Analyzer Standard analyzer API conventions New features New features to be discussed New features with description and issue number Breaking changes Aggregations changes Analysis changes API changes Cluster changes Discovery changes High-level REST client changes Low-level REST client changes Indices changes Java API changes Mapping changes ML changes Packaging changes Search changes Query DSL changes Settings changes Scripting changes Migration between versions Summary Chapter 2: Index APIs Index management APIs Basic CRUD APIs Index settings Index templates Index aliases Reindexing with zero downtime Grouping multiple indices Views on a subset of documents Miscellaneous Monitoring indices Indices stats Indices segments, recovery, and share stores Index persistence Advanced index management APIs Split index Shrink index Rollover index Summary Chapter 3: Document APIs The Elasticsearch document life cycle What is a document? The document life cycle Single document management APIs Sample documents Indexing a document Retrieving a document by identifier Updating a document Removing a document by identifier Multi-document management APIs Retrieving multiple documents Bulk API Update by query API Delete by query API Reindex API Copying documents Migration from a multiple mapping types index Summary Chapter 4: Mapping APIs Dynamic mapping Mapping rules Dynamic templates Meta fields in mapping Field datatypes Static mapping for the sample document Mapping parameters Refreshing mapping changes for static mapping Typeless APIs working with old custom index types Summary Chapter 5: Anatomy of an Analyzer An analyzer\'s components Character filters The html_strip filter The mapping filter The pattern_replace filter Tokenizers Token filters Built-in analyzers Custom analyzers Normalizers Summary Chapter 6: Search APIs Indexing sample documents Search APIs URI search Request body search The sort parameter The scroll parameter The search_after parameter The rescore parameter The _name parameter The collapse parameter The highlighting parameter Other search parameters Query DSL Full text queries The match keyword The query string keyword The intervals keyword Term-level queries Compound queries The script query The multi-search API Other search-related APIs The _explain API The _validate API The _count API The field capabilities API Profiler Suggesters Summary Section 2: Data Modeling, Aggregations Framework, Pipeline, and Data Analytics Chapter 7: Modeling Your Data in the Real World The Investor Exchange Cloud Modeling data and the approaches Data denormalization Using an array of objects datatype Nested object mapping datatypes Join datatypes Parent ID query has_child query has_parent query Practical considerations Summary Chapter 8: Aggregation Frameworks ETF historical data preparation Aggregation query syntax Matrix aggregations Matrix stats Metrics aggregations avg weighted_avg cardinality value_count sum min max stats extended_stats top_hit percentiles percentile_ranks median_absolute_deviation geo_bound geo_centroid scripted_metric Bucket aggregations histogram date_histogram auto_date_histogram ranges date_range ip_range filter filters term significant_terms significant_text sampler diversified_sampler nested reverse_nested global missing composite adjacency_matrix parent children geo_distance geohash_grid geotile_grid Pipeline aggregations Sibling family avg_bucket max_bucket min_bucket sum_bucket stats_bucket extended_stats_bucket percentiles_bucket Parent family cumulative_sum derivative bucket_script bucket_selector bucket_sort serial_diff Moving average aggregation simple linear ewma holt holt_winters Moving function aggregation max min sum stdDev unweightedAvg linearWeightedAvg ewma holt holtWinters Post filter on aggregations Summary Chapter 9: Preprocessing Documents in Ingest Pipelines Ingest APIs Accessing data in pipelines Processors Conditional execution in pipelines Handling failures in pipelines Summary Chapter 10: Using Elasticsearch for Exploratory Data Analysis Business analytics Operational data analytics Sentiment analysis Summary Section 3: Programming with the Elasticsearch Client Chapter 11: Elasticsearch from Java Programming Overview of Elasticsearch Java REST client The Java low-level REST client The Java low-level REST client workflow REST client initialization Performing requests using a REST client Handing responses Testing with Swagger UI New features The Java high-level REST client The Java high-level REST client workflow REST client initialization Performing requests using the REST client Handling responses Testing with Swagger UI New features Spring Data Elasticsearch Summary Chapter 12: Elasticsearch from Python Programming Overview of the Elasticsearch Python client The Python low-level Elasticsearch client Workflow for the Python low-level Elasticsearch client Client initialization Performing requests Handling responses The Python high-level Elasticsearch library Illustrating the programming concept Initializing a connection Performing requests Handling responses The query class The aggregations class Summary Section 4: Elastic Stack Chapter 13: Using Kibana, Logstash, and Beats Overview of the Elastic Stack Running the Elastic Stack with Docker Running Elasticsearch in a Docker container Running Kibana in a Docker container Running Logstash in a Docker container Running Beats in a Docker container Summary Chapter 14: Working with Elasticsearch SQL Overview Getting started Elasticsearch SQL language Reserved keywords Data type Operators Functions Aggregate Grouping Date-time Full-text search Mathematics String Type conversion Conditional System Elasticsearch SQL query syntax New features Elasticsearch SQL REST API Elasticsearch SQL JDBC Upgrading Elasticsearch from a basic to a trial license Workflow of Elasticsearch SQL JDBC Testing with Swagger UI Summary Chapter 15: Working with Elasticsearch Analysis Plugins What are Elasticsearch plugins? Plugin management Working with the ICU Analysis plugin Examples Working with the Smart Chinese Analysis plugin Examples Working with the IK Analysis plugin Examples Configuring a custom dictionary in the IK Analysis plugin Summary Section 5: Advanced Features Chapter 16: Machine Learning with Elasticsearch Machine learning with Elastic Stack Machine learning APIs Machine learning jobs Sample data Running a single-metric job Creating index patterns Creating a new machine learning job Examining the result Machine learning using Elasticsearch and scikit-learn Summary Chapter 17: Spark and Elasticsearch for Real-Time Analytics Overview of ES-Hadoop Apache Spark support Real-time analytics using Elasticsearch and Apache Spark Building a virtual environment to run the sample ES-Hadoop project Running the sample ES-Hadoop project Running the sample ES-Hadoop project using a prepared Docker image Source code Summary Chapter 18: Building Analytics RESTful Services Building a RESTful web service with Spring Boot Project program structure Running the program and examining the APIs Main workflow anatomy Building the analytic model Performing daily update data Getting the registered symbols Building the scheduler Integration with the Bollinger Band Building a Java Spark ML module for k-means anomaly detection Source code Testing Analytics RESTful services Testing the build-analytics-model API Testing the get-register-symbols API Working with Kibana to visualize the analytics results Summary Other Books You May Enjoy Index