دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Yang Xing, Chen Lv, Dongpu Cao سری: ISBN (شابک) : 0128191139, 9780128191132 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 249 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Advanced Driver Intention Inference: Theory and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استنتاج قصد راننده پیشرفته: نظریه و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استنتاج قصد راننده پیشرفته: تئوری و طراحی یکی از مهم ترین عملکردهای ADAS آینده، یعنی استنتاج قصد راننده را توصیف می کند. این کتاب حاوی دانش پیشرفته در مورد ساخت سیستم استنتاج قصد راننده است، که درک بهتری در مورد اینکه چگونه مکانیسم قصد راننده انسانی به یک سیستم تصمیم گیری طبیعی تر در داخل هواپیما برای وسایل نقلیه خودکار کمک می کند، ارائه می دهد.
Advanced Driver Intention Inference: Theory and Design describes one of the most important function for future ADAS, namely, the driver intention inference. The book contains the state-of-art knowledge on the construction of driver intention inference system, providing a better understanding on how the human driver intention mechanism will contribute to a more naturalistic on-board decision system for automated vehicles.
Cover Advanced Driver Intention Inference: Theory and Design Copyright List of Abbreviations Abstract Keywords 1. Introduction What Is Human Intention? Driver Intention Classification Studies Related to Driver Intention Inference Conclusion Chapter Outlines References 2. State of the Art of Driver Lane Change Intention Inference Driver Intention Inference Background Lane Change Maneuver Analysis—an Exemplary Scenario Lane Change Assistance Systems Lane Departure Warning Lane Keeping Assistance Lane Change Assistance Limitations and Emerging Requirement Human Intention Mechanisms Driver Intention Classification Timescale-Based Driver Intention Classification Direction-Based Driver Intention Classification Task-Based Driver Intention Classification Driver Intention Inference Methodologies The Architecture of Driver Intention Inference System Inputs for Driver Intention Inference System Traffic context Vehicle dynamics Driver behaviors Electroencephalography Algorithms for Driver Intention Inference Generative Model Discriminative Model Cognitive Model Deep Learning Methods Evaluation of Driver Intention Inference System Detection Accuracy Prediction Horizon Challenges and Future Works Design Next-Generation Advanced Driver Assistance Systems Integration of driver monitoring systems The need for a comprehensive environment model Design cognitive model for driver intention Situation Awareness and Interaction-Aware Modeling Situation awareness modeling Interaction-aware modeling Autonomous Driving Parallel Driver Intention Inference System Conclusions References 3. Road Perception in Driver Intention Inference System Introduction Vision-Based Lane Detection Algorithm General Lane Detection Procedure Conventional Image-Processing-Based Algorithms Machine Learning-Based Algorithms Integration Methodologies for Road Perception Integration Methods—Introduction Algorithm level integration System level integration Vehicle detection Vehicle detection System level fusion System level fusion Sensor level integration Evaluation Methodologies for Vision-Based Road Perception Systems Influential Factors for Lane Detection Systems Offline Evaluation Online Evaluation Evaluation Metrics Discussion Current Limitations and Challenges Applying the Parallel Theory to Road Perception Systems Conclusion References 4. Design of Integrated Road Perception and Lane Detection System for Driver Intention Inference Road Detection Introduction Related Works Data Processing KITTI road dataset Lidar camera calibration Model construction Fusion network architectures Model optimization Experimental Results Conclusion Lane Detection Introduction Popular lane detection techniques Lane Detection System Setup Algorithm-Level Integrated Lane Detection Lane detection using Sobel filter and Hough transform method Image processing Image processing Edge extraction Edge extraction Hough transform Hough transform Lane detection using Gaussian mixture model and RANSAC method GMM-based feature extraction GMM-based feature extraction RANSAC model fitting RANSAC model fitting Lane tracking with Kalman filter Lane sampling and voting for lane recognition Lane color detection Lane color detection Lane-type detection Lane-type detection Lane Algorithms Integration and Evaluation Integration of lane detection algorithms Integration of lane detection algorithms Experimental Results Experimental results Discussion Conclusions References 5. Driver Behavior Recognition in Driver Intention Inference Systems Introduction Machine-Learning Methods for Human Activities Recognition—A Case Study on Activity Recognition Initial data processing Data dimension reduction Support vector machine method Hidden Markov model method Feature Engineering in Driver Behavior Recognition Driver Behavior Overview Driver Head Pose Estimation Driver Head Pose Estimation Using Head Features Head Pose Estimation Using Random Forest Driver Body Detection Driver Behaviors Recognition Experimental Design and Data Analysis Overall System Architecture Inner-Vehicle Experiment Setup and Data Collection Data Processing Kinect Sensor-Based Head Rotation Data Calibration Noise Removal and Data Smoothing Tasks Identification Algorithms Design Feature Importance Evaluation Using Random Forest and Maximal Information Coefficient Random forests for feature importance estimation Maximal information coefficient for feature importance estimation Comparison of the feature importance prediction Feedforward Neural Network for Driver Behavior Classification Experiment Results and Analysis Behavior Recognition Results Feature Evaluation for Behavior Classification Performance Discussion and Future Work Conclusions References 6. Application of Deep Learning Methods in Driver Behavior Recognition Introduction Experiment and Data Collection End-to-End Recognition Based on Deep Learning Algorithm Image Preprocessing and Segmentation Model Preparation and Transfer Learning Experiment Results and Analysis The Impact of GMM Image Segmentation on Driving Tasks Recognition Visualization of Deep CNN Models Results Comparison Between Transfer Learning and Feature Extraction Driver Distraction Detection Using Binary Classifier Discussion Transfer Learning Performance Real-Time Application Conclusions References 7. Longitudinal Driver Intention Inference Braking Intention Recognition Based on Unsupervised Machine Learning Methods Unsupervised Learning Background K-means Gaussian mixture model Experiment Design Case study vehicle Driving cycle Parameter selection Unsupervised clustering training process Experiment Results K-means result Gaussian mixture model result Discussion Conclusions Levenberg-Marquardt Backpropagation for State Estimation of a Safety-Critical Cyber-Physical System Multilayer Artificial Neural Network Architecture System architecture Multilayer feedforward neural network Standard Backpropagation Algorithm Levenberg-Marquardt Backpropagation Hybrid-Learning-Based Classification and Quantitative Inference of Driver Braking Intensity Hybrid-Learning-Based Architecture and Algorithms High-Level architecture of the Proposed algorithms Classification of braking intention level using gaussian mixture model Braking intention classification using random forest Brake Pressure Estimation Based on Artificial Neural Network Experimental Testing and Data Preprocessing Experiment design Experimental vehicle with brake blending system Data collection and processing Feature selection and model training Experiment Results and Analysis Labeling result of braking intensity level using Gaussian mixture model Random forest-based classification results of braking intensity level Estimation result of braking pressure based on artificial neural network Discussions Fault classification of the intensive braking Performance With a Reduced Order Feature Vector Conclusions References 8. Driver Lane-Change Intention Inference Host Driver Intention Inference Introduction The Framework of Comprehensive Driver Intention Recognition Driver intention inference framework Lane-change intention formulation Methodologies in Driver Lane-Change Intention Inference Experimental setup and naturalistic highway data collection Traffic context and vehicle dynamic features Driver behavioral features Algorithms in Driver Lane-Change Intention Inference Support vector machine A case study of SVM in driver workload estimation A case study of SVM in driver workload estimation Hidden Markov model Recurrent neural network Long short-term memory Performance Evaluation Driver lane-change maneuver analysis Lane-change intention inference results Discussions and Perspectives Conclusions Leading Vehicle Intention Inference-Trajectory Prediction Introduction Driving Style Recognition Based on GMM Joint Feature Learning and Personalized Trajectory Prediction Recurrent neural network and LSTM Joint time-series model construction Experimental Results Evaluation metrics and baselines Performance evaluation Conclusions Mutual Understanding-Based Driver–Vehicle Collaboration Introduction Literature Review References 9. Conclusions, Discussions, and Directions for Future Work Integrated Road Detection Toward Robust Traffic Context Perception Algorithm Limitation Directions for Future Work Driving Activity Recognition and Secondary Task Detection Algorithm Limitation Directions for Future Work Driver Lane Change Intention Inference Based on Traffic Context and Driver Behavior Recognition Algorithm Limitation Directions for Future Work Driver Braking Intention Recognition and Braking Intensity Estimation Based on the Braking Style Classification Algorithm Limitation Directions for Future Work Conclusions and Final Discussions Index A B C D E F G H I J K L M N O P R S T V Back Cover