دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jaume Salom (editor), Thorsten Urbaneck (editor), Eduardo Oro (editor) سری: ISBN (شابک) : 8793519427, 9788793519428 ناشر: River Publishers سال نشر: 2017 تعداد صفحات: 338 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 52 مگابایت
در صورت تبدیل فایل کتاب Advanced Concepts for Renewable Energy Supply of Data Centres (River Publishers Series in Renewable Energy) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم پیشرفته برای تامین انرژی های تجدیدپذیر مراکز داده (سری ناشران رودخانه در انرژی های تجدیدپذیر) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Half Title Page RIVER PUBLISHERS SERIES IN RENEWABLE ENERGY Title Page - Advanced Concepts for Renewable Energy Supply of Data Centres Copyright Page Contents Preface Acknowledgments List of Contributors List of Figures List of Tables List of Symbols and Abbreviations Chapter 1 -Data Centre Overview 1.1 Data Centre Infrastructure 1.1.1 Introduction 1.2 Main Subsystems 1.2.1 IT Equipment 1.2.2 Power System 1.2.3 Cooling System 1.3 Data Centre Archetypes 1.3.1 Function or Objective of the Data Centre 1.3.2 Size 1.3.3 Location and Surroundings 1.3.4 Archetypes Definition 1.4 Workload Typology 1.4.1 WebWorkloads 1.4.2 HPCWorkloads 1.4.3 DataWorkloads 1.4.4 Consumption versusWorkload Typology 1.5 Redundancy Level 1.5.1 Basic Definitions 1.5.2 Tier Levels 1.6 Future Trends References Chapter 2 - Operational Requirement 2.1 Working Temperature Limit 2.1.1 Impact of Server Inlet Temperature 2.1.2 Permitted Temperatures of Individual Components 2.1.3 CPU Power Management and Throttling 2.2 Environmental Conditions 2.2.1 Temperature and Humidity Requirements 2.2.2 Quality of the Room Air 2.3 Power Quality 2.3.1 Input Voltage within Acceptable Limits 2.3.2 Input Frequency within Allowable Ranges 2.3.3 Sufficient Input Power to Compensate for Power Factor 2.3.4 Transfer to Backup Power Faster than PSU “Hold-up”Time 2.3.5 Protection from Damaging Power Conditions References Chapter 3 - Environmental and Economic Metrics for Data Centres 3.1 About Metrics in Data Centres 3.2 Data Centre Boundaries for Metrics Calculation 3.2.1 Definition of Boundaries 3.2.2 Energy Flows 3.3 Metrics for Cost-Environmental Analysis 3.3.1 Environmental Impact Metrics 3.3.1.1 Data Centre primary energy 3.3.1.2 Data Centre CO2 emissions 3.3.1.3 Data Centre water consumption 3.3.2 Financial Metrics 3.3.2.1 Methodological reference framework 3.3.2.2 Global cost 3.3.2.3 CAPEX: capital expenditure 3.3.2.4 OPEX: operating expenditure 3.3.3 Cost-Efficiency Analysis 3.4 Energy Efficiency and Renewable Energy Metrics 3.4.1 Power Usage Effectiveness (PUE) 3.4.2 Renewable Energy Ratio 3.4.3 Renewable Energy Factor 3.5 Capacity Metrics 3.5.1 Introduction 3.5.2 Capacity Metrics 3.6 Examples 3.6.1 Example 1. PV System and Ice Storage 3.6.2 Example 2. District Cooling and Heat Reuse References Chapter 4 - Advanced Technical Concepts for Efficient Electrical Distribution and IT Management 4.1 Advanced Technical Concepts for Efficient IT Management 4.2 Advanced Technical Concepts for Efficient Electric Power Distribution 4.2.1 Introduction 4.2.2 Modular UPS 4.2.3 Bypassed UPS 4.2.4 Enhanced UPS for Electrical Energy Storage References Chapter 5 - Advanced Technical Concepts for Low-Exergy Climate and Cooling Distribution 5.1 Introduction 5.2 Free Cooling 5.2.1 Free Cooling with Direct Ambient Air 5.2.2 Free Cooling with Indirect Ambient Air 5.2.3 Seawater Air Conditioning System 5.2.4 Free Cooling with Groundwater 5.3 Increasing Allowable IT Temperatures 5.3.1 Increased White Space Temperature with Airside Cooling 5.3.2 Increased White Space Temperature with Chilled Water Cooling 5.3.3 Increasing the Delta T Through the IT Equipment 5.4 Hot or Cold Aisle Containment 5.5 Variable Airflow 5.5.1 Strategy A: Pressure Difference 5.5.2 Strategy B: Actual IT load 5.5.3 Strategy C: Return Air Temperature 5.6 Partial Load – Redundant or Oversized Components 5.6.1 Redundant Components and Oversizing Components 5.6.2 Partial Load with Chillers 5.6.3 Variable Flow with Fans and Pumps 5.6.4 Oversizing Dry Coolers and Cooling Towers 5.6.5 Energy Savings and Payback Periods 5.7 High Energy Efficiency Components 5.7.1 Fans and Pumps 5.7.2 Air-Cooled Chillers 5.7.3 Water-Cooled Chillers 5.8 Conclusions References Chapter 6 - Advanced Technical Concepts for Power and Cooling Supply with Renewables 6.1 Introduction 6.1.1 Concepts Overview 6.1.1.1 Sankey charts analysis 6.2 Description of the Proposed Advanced Technical Concepts 6.2.1 Photovoltaic System and Wind Turbines with Vapour-Compression Chiller and Lead-Acid Batteries 6.2.2 District Cooling and Heat Reuse 6.2.3 Grid-FedWet Cooling Tower Without Chiller 6.2.4 Grid-Fed Vapour-Compression Chiller with Electrical Energy and Chilled Water Storages 6.2.5 Biogas Fuel Cell with Absorption Chiller 6.2.6 Reciprocating Engine CHP with Absorption Chiller References Chapter 7 - Applying Advanced Technical Concepts to Selected Scenarios 7.1 Overview of Concept Performance 7.2 Concept Comparison for Selected Scenarios 7.2.1 Description of Scenarios Analysed 7.3 Detailed Analysis by Advanced Technical Concepts 7.3.1 Introduction 7.3.2 Concept 1. Photovoltaic System and Wind Turbines with Vapour-Compression Chiller 7.3.2.1 Influence of energy efficiency measures 7.3.2.2 Influence of size 7.3.2.3 On-Site renewable energy systems implementation 7.3.3 Concept 2. District Cooling and Heat Reuse 7.3.3.1 Influence of energy efficiency measures 7.3.3.2 Influence of size 7.3.3.3 Influence of the liquid cooling solution and the potential heat reuse 7.3.4 Concept 3. Grid-FedWet Cooling Tower without Chiller 7.3.4.1 Influence of energy efficiency measures 7.3.4.2 Influence of EE measures 7.3.4.3 Influence of size 7.3.4.4 On-site PV systems implementation 7.3.5 Concept 4. Grid-Fed Vapour-Compression Chiller with Electrical Energy and ChilledWater Storages 7.3.5.1 Influence of EE measures 7.3.5.2 Influence of size 7.3.5.3 Influence of the size of TES 7.3.6 Concept 5. Biogas Fuel Cell with Absorption Chiller 7.3.6.1 Influence of EE measures 7.3.6.2 Influence of size 7.3.6.3 Influence of absorption chiller sizes and potential heat reuse 7.3.7 Concept 6. Reciprocating Engine CHP with Absorption Chiller 7.3.7.1 Influence of EE measures 7.3.7.2 Influence of size 7.3.7.3 Influence of absorption chiller sizes and potential heat reuse 7.4 Other Aspects Influencing Data Centre Energy Consumption 7.4.1 Influence of the IT Load Profile 7.4.1.1 Influence of the rack density, occupancy, and oversizing factors 7.5 The RenewIT Tool 7.6 Conclusion References Annexes Index About the Editors Back Cover