ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Computational Methods in Mechanical and Materials Engineering

دانلود کتاب روشهای محاسباتی پیشرفته در مهندسی مکانیک و مواد

Advanced Computational Methods in Mechanical and Materials Engineering

مشخصات کتاب

Advanced Computational Methods in Mechanical and Materials Engineering

ویرایش:  
نویسندگان: , , , ,   
سری: Computational Intelligence Techniques 
ISBN (شابک) : 9781000483024, 1000483029 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 343 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Advanced Computational Methods in Mechanical and Materials Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روشهای محاسباتی پیشرفته در مهندسی مکانیک و مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Table of Contents
Introduction
Preface
Editors
Acknowledgment
Contributors
Section A: Manufacturing Engineering
	Chapter 1: Integration of Technologies to Foster Sustainable Manufacturing
		1.1 Introduction
		1.2 The Key Technologies of Industries 4.0
		1.3 Policy Tools and Smart Approach for Industrial Innovation for Sustainable Manufacturing
		1.4 China’s Industry 4.0 Approach
		1.5 Germany’s Industry 4.0 Approach
		1.6 Singapore: Case Study
		1.7 Germany’s Case Study
		1.8 Smart Automated Guided Vehicles (AGV) – Industry 4.0
		1.9 Indonesia’s Case Study
		1.10 New Zealand’s Case Study
		1.11 Conclusion and Future Scope
		References
	Chapter 2: Intelligence-Assisted Cobots in Smart Manufacturing
		2.1 Introduction
		2.2 Intelligent-Assist Devices (IADs)
		2.3 Human–Robot Collaboration (HRC) and its Classification
			2.3.1 HRC in Assembly Line
			2.3.2 Classification of the HRC System
			2.3.3 Human–Robot Collaboration (HRC) in Assembly Lines
		2.4 Symbiotic HRC Requirements
		2.5 Cobot Deployment Framework in Assembly Lines
			2.5.1 Hybrid Production Requirements
			2.5.2 Development Phase Analysis
			2.5.3 Production Synthesis
		2.6 Cobot Selection Parameters
		2.7 Industrial Applications
		2.8 Safety Measures
		2.9 Results
		2.10 Conclusion
		2.11 Future Scope
		References
	Chapter 3: Machine Learning for Friction Stir Welding
		3.1 Introduction
		3.2 What is the Friction Stir Welding Process?
		3.3 Machine Learning in Friction Stir Welding Process
			3.3.1 Defects Identification in Friction Stir Welding Process
			3.3.2 Application of Machine Learning to Determine the Mechanical Properties of a Friction Stir-Welded Joint
			3.3.3 Application of Machine Learning in Microstructure Study of Friction Stir Welded Joint
		3.4 Conclusion
		References
	Chapter 4: Mathematical and Intelligent Modeling in Tundish Steelmaking
		4.1 Introduction
		4.2 Constituents of Mathematical Modeling in Tundish
			4.2.1 Fluid Flow Modeling
				4.2.1.1 Flow Characteristics
			4.2.2 Turbulence Flow Modeling
				4.2.2.1 Classic k -ε Model
				4.2.2.2 k-ω Model
				4.2.2.3 LES Model
			4.2.3 Inclusion Transport Modeling
			4.2.4 Slag Modeling
			4.2.5 Argon Gas Modeling
		4.3 Intelligent Modeling in Tundish Steelmaking
		Nomenclatures
		References
	Chapter 5: Analysis of Inclusion Behavior In-Mold During Continuous Casting
		5.1 Introduction
		5.2 Origin of Inclusions
		5.3 Mathematical Modeling
			5.3.1 Assumptions and Boundary Conditions
			5.3.2 Mathematical Model
				5.3.2.1 Electromagnetic Field Model
				5.3.2.2 Fluid Flow Model
				5.3.2.3 Solidification Model
		5.4 Inclusion Tracking
		5.5 Criteria for Inclusion Removal
		5.6 Parameters Affecting Inclusion Capture
		5.7 Inclusion Removal Without EMS
		5.8 Inclusion Removal with EMS
		5.9 Conclusion
		References
	Chapter 6: Modeling of Inclusion Motion Under Interfacial Tension in a Flash Welding Process
		6.1 Introduction
		6.2 Experiments
		6.3 Numerical Modeling
			6.3.1 The Governing Equations
			6.3.2 Numerical Details
		6.4 Results and Discussion
			6.4.1 Effect of Flash Butt Welding Parameters and Inclusion Size
			6.4.2 Pushing and Engulfment of Inclusions
		6.5 Conclusions
		References
Section B: Mechanical Design Engineering
	Chapter 7: A Robust Approach for Roundness Evaluation
		7.1 Introduction
			7.1.1 Definition of Circularity
			7.1.2 Various Approaches in Roundness Evaluation
			7.1.3 Various Computational Methods for Evaluation of Circularity
		7.2 Scope of the Chapter
		7.3 Proposed Hybrid Method
		7.4 Results and Discussion
		7.5 Summary
		Acknowledgment
		References
	Chapter 8: Computational Techniques for Predicting Process Parameters in the Magnetorheological Fluid-Assisted Finishing Process
		8.1 Introduction
		8.2 Analytical Analysis
			8.2.1 Flow Mode
				8.2.1.1 Analysis of Forces
				8.2.1.2 Surface Roughness Model
			8.2.2 Squeeze Mode
				8.2.2.1 Analysis of Forces
				8.2.2.2 Surface Roughness Model
		8.3 An Overview of Soft Computing Techniques used in the MFAF Process
			8.3.1 Neural Network
			8.3.2 Genetic Algorithm
			8.3.3 Fuzzy Logic
			8.3.4 JAYA
			8.3.5 Response Surface Methodology (RSM)
			8.3.6 Optimization of Process Parameters Affecting Surface Roughness
				8.3.6.1 Squeeze Mode
				8.3.6.2 Flow Mode
		8.4 Conclusions
		Acknowledgment
		References
	Chapter 9: Numerical Analysis of Limited LOCA Event Involving Deflection of Pressure Tube
		9.1 Introduction
		9.2 Experimental Work on the Pressure Tube Deflection in Limited Core Damage Condition
		9.3 Deflection Mechanism and Model
			9.3.1 A Non-elastic Material Flow Model
		9.4 Numerical Formulation for Limited PT Deformation
			9.4.1 Model-1: With Uniformly Distributed Load
			9.4.2 Model-2: With Weight Simulators
		9.5 Conclusion
		References
	Chapter 10: Application of Configurational Force Concept to Calculate the Crack Driving Force in Presence of an Interface at Various Orientations
		10.1 Introduction
		10.2 Configurational Forces-Based J -integrals
		10.3 Material Inhomogeneity: Influence of Change in Material's Property
		10.4 Effect of Orientation of Material Inhomogeneity on Crack Driving Force
		10.5 Results and Discussions
		10.6 Summary and Conclusions
		References
	Chapter 11: Thermal Contact Conductance Prediction Using FEM-Based Computational Techniques
		11.1 Introduction
			11.1.1 Factors Influencing Thermal Contact Conductance
			11.1.2 Importance and Applications
		11.2 Literature Review
		11.3 Challenges and Objective
		11.4 Rough Surface Modeling
			11.4.1 Choice of Finite Element Program
			11.4.2 Parameterization of Generated Surfaces
			11.4.3 Meshing
			11.4.4 Grid Independency Test
		11.5 Analysis
			11.5.1 Evaluating Real Contact Area
			11.5.2 Estimating Thermal Contact Conductance
		11.6 Results and Discussion
			11.6.1 Contact Pressure Plots
			11.6.2 Roughness Effect
				11.6.2.1 Mild Steel Model
				11.6.2.2 Aluminum Model
			11.6.3 Loading Effect
				11.6.3.1 Mild Steel Model
				11.6.3.2 Aluminum Model
			11.6.4 Material Effect
			11.6.5 Thermal Contact Conductance
		11.7 Conclusion
		References
Section C: Materials Engineering
	Chapter 12: Viscoelastic Composites for Passive Damping of Structural Vibration
		12.1 Introduction
			12.1.1 Unconstrained/Constrained Layer Damping Treatment
			12.1.2 Viscoelastic Composites for UCLD/CLD Treatment
		12.2 Mathematical Modeling of CLD Treatment
		12.3 Finite Element Formulation
		12.4 Numerical Results and Discussion
			12.4.1 Properties of the Component Materials
			12.4.2 Damping Analysis of the Layered Plate
		12.5 Summary
		References
	Chapter 13: Thermal Buckling and Post-Buckling Behavior of CNT-Reinforced Composite Laminated Plate
		13.1 Introduction
		13.2 Mathematical Modeling
			13.2.1 Mori–Tanaka Scheme and Rule of Mixture
			13.2.2 Mathematical Formulation
			13.2.3 Displacement Field
			13.2.4 Strain-Displacement Relations
			13.2.5 Constitutive Stress-Strain Equations
			13.2.6 Governing Differential Equations of Motion
			13.2.7 Transformation of Governing Differential Equations into Non-dimensional Form
			13.2.8 Boundary Conditions
		13.3 Methodology of Solution
			13.3.1 Spatial Discretization Technique
		13.4 Results and Discussion
			13.4.1 Convergence Study
			13.4.2 Validation Study
			13.4.3 Results and Discussions
		13.5 Conclusion
		References
	Chapter 14: Mesoscale Analysis of Polymer-CNT Composites for Evaluation of Elasto-Plastic and Thermo-Elastic Properties
		14.1 Introduction
		14.2 Homogenization and FEM Techniques
			14.2.1 Mori–Tanaka Method (MTM) for Thermo-Elastic Composites
			14.2.2 Mori–Tanaka Method (MTM) for Elastic Composites
			14.2.3 Mesoscale Finite Element Method
		14.3 Application of Homogenization and FEM Techniques
			14.3.1 Application of Mori–Tanaka to Polymer-CNT Composites
				14.3.1.1 Effect of Volume Fraction and Orientation of CNTs on the Elastic Properties
				14.3.1.2 Effect of Aspect Ratio and Orientation of CNTs on the Elastic Properties
			14.3.2 Application of Mori–Tanaka to Polymer-CNT Composites with a Linear-elastic Coating
				14.3.2.1 Effect of Volume Fraction and Orientation of CNTs on the Elastic Properties
				14.3.2.2 Effect of Aspect Ratio and Orientation of CNTs on the Elastic Properties
			14.3.3 Application of Mesoscale FEM to Polymer-CNT Composites with a Linear-elastic Coating
		14.4 Summary
		References
	Chapter 15: Analysis of Magnetic Abrasive Flow Machining (MAFM) Process Parameters for Internal Finishing of Al/SiC/Al 2 O 3 /REOs Composites Using Box–Behnken Design
		15.1 Introduction
		15.2 Experimental Details
			15.2.1 Preparation of Hybrid Composites and MAFM Setup
			15.2.2 Planning for Experiments
		15.3 Experimental Results and Discussions
			15.3.1 Results of MAFM
				15.3.1.1 Analysis of Variance and Mathematical Model for Surface Roughness
				15.3.1.2 Effect of Magnetic Flux Density, Number of Cycles and Extrusion Pressure on Surface Roughness
				15.3.1.3 Optimization of Surface Roughness Using Desirability Approach
				15.3.1.4 Confirmatory Experiments
		15.4 Conclusions
		References
Index




نظرات کاربران