دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Mohamed Thariq Hameed Sultan (editor), Vishesh Ranjan Kar (editor), Subrata Kumar Panda (editor), Kandaswamy Jayakrishna (editor) سری: ISBN (شابک) : 036774631X, 9780367746315 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 296 [309] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced Composite Materials and Structures: Modeling and Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد و سازه های مرکب پیشرفته: مدل سازی و تجزیه و تحلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب شکاف بین مفاهیم نظری و پیادهسازیهای آنها را، بهویژه برای سازهها/قطعات با کارایی بالا مرتبط با مواد کامپوزیتی پیشرفته، پر میکند. این کار بر پیشبینی پاسخهای ساختاری مختلف مانند تغییر شکلها، فرکانسهای طبیعی و غیره کامپوزیتهای پیشرفته تحت محیطهای پیچیده و/یا شرایط بارگذاری متمرکز است. علاوه بر این، مدلسازی مواد ریزمکانیکی مواد کامپوزیتی پیشرفته مختلف را مورد بحث قرار میدهد که شامل ساختارهای مختلف از ابتدایی تا پیشرفته، مانند تیرها، پانلهای مسطح و منحنی، پوستهها، اریب، موجدار و مواد دیگر و همچنین تکنیکهای مختلف راهحل میشود. از طریق رویکردهای تحلیلی، نیمه تحلیلی، و عددی.
این کتاب:
این کتاب برای محققان، متخصصان و دانشجویان فارغ التحصیل در رشته های مهندسی مکانیک، علم مواد، مهندسی مواد، مهندسی سازه، مهندسی هوافضا و مواد مرکب.
This book bridges the gap between theoretical concepts and their implementations, especially for the high-performance structures/components related to advanced composite materials. This work focuses on the prediction of various structural responses such as deformations, natural frequencies etc. of advanced composites under complex environments and/or loading conditions. In addition, it discusses micro-mechanical material modeling of various advanced composite materials that involve different structures ranging from basic to advanced, such as beams, flat and curved panels, shells, skewed, corrugated, and other materials, as well as various solution techniques via analytical, semi-analytical, and numerical approaches.
This book:
This book is aimed at researchers, professionals, and graduate students in mechanical engineering, material science, material engineering, structural engineering, aerospace engineering, and composite materials.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1: Multi-Directional Graded Composites: An Introduction 1.1 Introduction 1.2 Gradation Schemes in FGMs 1.2.1 Power Law 1.2.2 Exponential Law 1.2.3 Sigmoid Law 1.3 Homogenization Schemes in FGMs 1.3.1 Voigt’s Scheme 1.3.2 Reuss Scheme 1.3.3 Mori-Tanaka Scheme 1.3.4 Self-Consistent Method (SCM) 1.3.5 Tamura Scheme 1.3.6 Gasik-Ueda Model 1.3.7 Coherent Potential Approximation (CPA) 1.3.8 Kerner Model 1.3.9 Hirano Model 1.4 Comparison of Micromechanical Modeling Schemes 1.5 Summary References Chapter 2: Free Vibration Characteristics of Bi-Directional Functionally Graded Composite Panels 2.1 Introduction 2.2 Micromechanical Material Modeling of B-FGC Structure 2.2.1 Voigt Model 2.2.2 Mori–Tanaka Scheme 2.3 Finite Element Formulations 2.3.1 Higher-Order Kinematic Model 2.3.2 Constitutive Relations 2.3.3 Energy Equations 2.3.4 Boundary Conditions 2.4 Convergence and Validation Study 2.5 Results and Discussion 2.6 Conclusions References Chapter 3: Analytical Solution for the Steady-State Heat Transfer Analysis of Porous Nonhomogeneous Material Structures 3.1 Introduction 3.1.1 Differential Transform Method 3.2 Micromechanical Property of Even and Uneven Porous FGM 3.3 Steady-State Heat Transfer Behavior of FGM Plate 3.3.1 Physical Derivation of 1 D Heat Equation for FGM Plate 3.3.1.1 Thermal Energy Stored within a Body with Nonhomogeneous Material Properties 3.3.1.2 Fourier Law of Heat Transfer 3.3.1.3 Principle of Energy Conservation 3.3.2 Boundary Conditions 3.3.2.1 Dirichlet Boundary Condition 3.3.2.2 Neuman Boundary Condition 3.3.2.3 Mixed Boundary Condition 3.3.3 Nondimensionalization of Parameters 3.4 Solution with Differential Transform Method 3.4.1 Perfect Power-Law Graded X FGM 3.4.2 Even Porous Power-Law Graded X FGM 3.5 Results and Discussion 3.5.1 Validation Study 3.5.2 Numerical Illustration 3.6 Conclusions References Chapter 4: Effect of Corrugation on the Deformation Behavior of Spatially Graded Composite Panels 4.1 Introduction 4.2 Mathematical Formulation 4.2.1 Effective Material Properties 4.2.2 Displacement Field 4.2.3 Strain Displacement Relations 4.2.4 Constitutive Relation 4.2.5 Strain Energy 4.2.6 Work Done 4.2.7 Finite Element Formulation 4.2.8 Governing Equations 4.3 Results and Discussion 4.3.1 Convergence and Validation 4.3.2 Numerical Experimentation 4.4 Conclusion Acknowledgment References Chapter 5: Graphene-Magnesium Core-Shell Nanocomposites: Physical, Mechanical, Thermal, and Electrical Properties 5.1 Introduction 5.2 Mathematical Modeling of the Properties 5.2.1 Physical Property 5.2.2 Mechanical Property 5.2.3 Thermal Property 5.2.4 Electrical Property 5.2.5 With Varying Both Core and Shell Diameter 5.2.6 With Varying Core Diameter and Fixed Shell Diameter 5.3 Results and Discussion 5.3.1 Estimation of Physical and Mechanical Properties 5.3.2 Estimation of Thermal Properties 5.3.3 Estimation of Electrical Properties 5.4 Conclusion Acknowledgments References Chapter 6: Free Vibration of Carbon Nanotube–Reinforced Composite Beams under the Various Boundary Conditions 6.1 Introduction 6.2 Theoretical Formulation 6.3 Basic Equations 6.3.1 Fundamental Assumptions 6.3.2 Kinematics 6.3.3 Equations of Motion 6.4 Analytical Solution 6.5 Numerical Examples and Discussion 6.6 Conclusions References Chapter 7: Transient Characteristics of Carbon Nanotube–Reinforced Composite Plates under Blast Load 7.1 Introduction 7.1.1 Classifying Carbon Nanotubes 7.1.2 Carbon Nanotube Structure 7.1.3 Applications of Carbon Nanotubes 7.2 Micromechanical Property of FG CNT 7.3 Finite Element Formulation 7.3.1 Strain Displacement Relationship 7.3.2 Constitutive Relation 7.3.3 Description of Structural and Other Second-Order Systems 7.3.4 Time Integration Scheme for Linear Systems 7.3.5 Dynamic Loading 7.3.5.1 Exponential Blast Load 7.3.5.2 Sine Load 7.3.5.3 Triangular Load 7.3.5.4 Step Load 7.4 Results and Discussion 7.4.1 Support Conditions 7.4.2 Convergence Test 7.4.3 Validation Test 7.4.4 Numerical Illustration 7.4.4.1 Effect of Different Types of Loading 7.4.4.2 Effect of Boundary Condition 7.4.4.3 Effect of Geometrical Parameter 7.5 Concluding Remarks References Chapter 8: Micromechanics-Based Finite Element Analysis of HAp- Ti Biocomposite Sinusoid Structure Using Homogenization Schemes 8.1 Introduction 8.2 Mathematical Formulation 8.2.1 Effective Material Properties 8.2.1.1 Voigt’s Rule-of-Mixture 8.2.1.2 Mori–Tanaka Scheme 8.2.2 Kinematic Field 8.2.3 Constitutive and Energy Equations 8.2.4 Finite Element Approximations 8.3 Numerical Results and Discussion 8.3.1 Mesh Refinement and Verification Study 8.3.2 Numerical Experimentations 8.4 Conclusions Acknowledgment References Chapter 9: Stability Behavior of Biocomposite Structures Using 2D-Finite Element Approximation 9.1 Introduction 9.2 Micromechanical Material Modeling 9.2.1 Evaluation of Volume Fractions 9.2.2 Effective Material Properties 9.3 Finite Element Formulations 9.3.1 Kinematic Model 9.3.2 Constitutive Equations 9.3.3 Strain Energy Due to In-Plane Loading 9.3.4 Governing Equations 9.4 Stability Behavior of Biocomposite Structures 9.4.1 Convergence and Comparison Tests 9.4.2 Numerical Examples 9.4.2.1 Effect of Volume Fraction Index on Buckling Strength of FG Plate 9.4.2.2 Effect of Thickness Ratio on Buckling Strength of FG Plate 9.4.2.3 Effect of Aspect Ratio on Buckling Strength of FG Plate 9.5 Conclusions References Chapter 10: Dynamic Analysis of Sandwich Composite Plate Structures with Honeycomb Auxetic Core 10.1 Introduction 10.2 The Properties of Honeycomb Structures and Materials 10.2.1 The Effective Properties of Honeycomb Cells 10.3 Derivation of the Governing Equations of a Sandwich Plate 10.3.1 Orthotropic Material Properties 10.3.2 Kinematic Displacement and Strains for Laminate 10.3.3 Stiffness Matrix Relating Resultants for a Composite Laminate 10.3.4 Stiffness Matrices for a Sandwich Plate 10.3.5 Simply Supported Sandwich Plate 10.4 Results and Discussion 10.4.1 Study of Convergence and Validation of Natural Frequencies 10.4.2 Influence of Face Sheet Thickness on Natural Frequencies 10.4.3 Influence of Core Thickness on Natural Frequencies 10.4.4 Influence of Cell Thickness on Natural Frequencies 10.5 Conclusions References Chapter 11: Hygrothermoelastic Responses of Sinusoidally Corrugated Fiber-Reinforced Laminated Composite Structures 11.1 Introduction 11.2 Mathematical Formulations 11.2.1 Strain–Displacement Relations 11.3 Governing Equation and Solution Scheme 11.4 Results and Discussions 11.4.1 Convergence and Validation 11.4.2 Numerical Experimentations 11.4.2.1 Corrugated Laminated Composite Panel Subjected to Mechanical Load 11.4.2.2 Corrugated Laminated Composite Panel Subjected to Thermal Load 11.4.2.3 Corrugated Laminated Composite Panel Subjected to Hygral Load 11.4.2.4 Corrugated Laminated Composite Panel Subjected to Combined Load 11.5 Conclusions Acknowledgment References Chapter 12: Flexural Behavior of Shear Deformable FGM Composites with Corrugation: Higher-Order Finite Element Approximation 12.1 Introduction 12.2 Mathematical Formulation 12.2.1 Effective Material Properties 12.2.2 Displacement Field 12.2.3 Strain–Displacement Relations 12.2.4 Constitutive Relation 12.2.5 Strain Energy 12.2.6 Work Done 12.3 Finite Element Formulation 12.4 Results and Discussion 12.4.1 Convergence Behavior of Corrugated FG Panel 12.4.2 Validation with FG Cylindrical Shell 12.4.3 Numerical Experimentations 12.5 Conclusion Acknowledgment References Chapter 13: Multiscale Analysis of Laminates Printed by 3D Printing Fused Deposition Modeling Method 13.1 Introduction 13.2 Methodology 13.2.1 Mathematical Homogenization of the RVE 13.2.2 Design of the RVE 13.2.3 Computational Analysis of the RVE 13.3 Results and Discussions 13.4 Conclusion Acknowledgment References Chapter 14: Flexural Behavior of Carbon Nanotube-Reinforced Composites with Multiple Cutouts 14.1 Introduction 14.2 Types of Composite 14.2.1 Type of CNT According to Number of Tubes 14.2.2 Type of CNT According to Distribution 14.3 Application of FGCNT-Reinforced Composites 14.4 Research in FGCNT-Reinforced Composite 14.5 Effective Material Properties 14.6 Numerical Modeling of Perforated Plate 14.7 Results and Discussion 14.8 Conclusions Acknowledgment References Chapter 15: Damage Studies in Curved Hybrid Laminates under Pullout Loading 15.1 Introduction 15.2 Computational Damage Model 15.2.1 Damage Initiation Law 15.2.2 Damage Evolution Law 15.2.3 Interlaminar Damage 15.3 Finite Element Model 15.3.1 Modeling Strategy 15.3.2 Plane Strain Model 15.3.3 Plane Stress Model 15.4 Failure Load Prediction 15.5 Damages Predicted in Curved Region 15.6 Conclusion References Chapter 16: Dynamic Behavior of Laminated Composites with Internal Delamination 16.1 Introduction 16.2 Theoretical Formulation 16.2.1 Displacement Kinematics 16.2.2 Stress-Strain Relation 16.2.3 Energy Relation 16.2.4 Finite Element Formulation 16.2.5 System Governing Equation 16.3 ABAQUS Model Development 16.4 Results and Discussion 16.4.1 Validation Study 16.4.2 New Numerical Illustrations 16.4.2.1 Delamination Size Effect on Different Modes of Flat Composite 16.4.2.2 Effect of Different Shapes of Delamination 16.4.2.3 Mode Shapes of Different Shape of Delamination 16.5 Conclusions References Index