دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Patrick M. Fitzpatrick
سری: Pure and Applied Undergraduate Texts 5
ISBN (شابک) : 0821847910, 9780821847916
ناشر: American Mathematical Society(RI)
سال نشر: 2009
تعداد صفحات: 609
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 38 مگابایت
در صورت تبدیل فایل کتاب Advanced Calculus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حساب دیفرانسیل و انتگرال پیشرفته به عنوان متنی برای دروسی در نظر گرفته شده است که ستون فقرات تحصیلات کارشناسی دانشجو را در تجزیه و تحلیل ریاضی فراهم می کند. هدف ارائه دقیق مفاهیم اساسی در چارچوب مثال های روشنگر و تمرین های تحریک کننده است. این کتاب مستقل است و با ایجاد ابزارهای اساسی با استفاده از اصل کامل بودن شروع می شود. ویژگیهای تداوم، تمایز، یکپارچگی و نمایش سری توان توابع یک متغیر مشخص شده است. چند فصل بعدی خواص توپولوژیکی و متریک فضای اقلیدسی را شرح می دهد. اینها اساس برخورد دقیق حساب دیفرانسیل (شامل قضیه تابع ضمنی و ضرب کننده های لاگرانژ) برای نگاشت بین فضاهای اقلیدسی و ادغام برای توابع چندین متغیر واقعی هستند. توجه ویژه ای به انگیزه برای اثبات شده است. موضوعات منتخب، مانند قضیه وجود پیکارد برای معادلات دیفرانسیل، به گونهای گنجانده شدهاند که میتوان با حفظ ارائه سیال مطالب ضروری، انتخابهایی انجام داد. تکمیل شده با تمرینات متعدد، حساب دیفرانسیل و انتگرال پیشرفته یک کتاب عالی برای دانشجویان کارشناسی تجزیه و تحلیل است.
Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables. Special attention has been paid to the motivation for proofs. Selected topics, such as the Picard Existence Theorem for differential equations, have been included in such a way that selections may be made while preserving a fluid presentation of the essential material. Supplemented with numerous exercises, Advanced Calculus is a perfect book for undergraduate students of analysis.
0821847910 CONTENTS Preface XI Preliminaries 1 1 TOOLS FOR ANALYSIS 5 1.1 The Completeness Axiom and Some of Its Consequences 5 1.2 The Distribution of the Integers and the Rational Numbers 12 1.3 Inequalities and Identities 16 2 CONVERGENT SEQUENCES 23 2.1 The Convergence of Sequences 23 2.2 Sequences and Sets 35 2.3 The Monotone Convergence Theorem 38 2.4 The Sequential Compactness Theorem 43 2.5* Covering Properties of Sets 47 3 CONTINUOUS FUNCTIONS 53 3.1 Continuity 53 3.2 The Extreme Value Theorem 58 3.3 The Intermediate Value Theorem 62 3.4 Uniform Continuity 66 3.5 The $\\epsilon$-$\\delta$ Criterion for Continuity 70 3.6 Images and Inverses; Monotone Functions 74 3.7 Limits 81 4 DIFFERENTIATION 87 4.1 The Algebra of Derivatives 87 4.2 Differentiating Inverses and Compositions 96 4.3 The Mean Value Theorem and Its Geometric Consequences 101 4.4 The Cauchy Mean Value Theorem and Its Analytic Consequences 111 4.5 The Notation of Leibnitz 113 5* ELEMENTARY FUNCTIONS AS SOLUTIONS OF DIFFERENTIAL EQUATIONS 116 5.1 Solutions of Differential Equations 116 5.2 The Natural Logarithm and Exponential Functions 118 5.3 The Trigonometric Functions 125 5.4 The Inverse Trigonometric Functions 132 6 INTEGRATION: TWO FUNDAMENTAL THEOREMS 135 6.1 Darboux Sums; Upper and Lower Integrals 135 6.2 The Archimedes-Riemann Theorem 142 6.3 Additivity, Monotonicity, and Linearity 150 6.4 Continuity and Integrability 155 6.5 The First Fundamental Theorem: Integrating Derivatives 160 6.6 The Second Fundamental Theorem: Differentiating Integrals 165 7* INTEGRATION: FURTHER TOPICS 175 7.1 Solutions of Differential Equations 175 7.2 Integration by Parts and by Substitution 178 7.3 The Convergence of Darboux and Riemann Sums 183 7.4 The Approximation of Integrals 190 8 APPROXIMATION BY TAYLOR POLYNOMIALS 199 8.1 Taylor Polynomials 199 8.2 The Lagrange Remainder Theorem 203 8.3 The Convergence of Taylor Polynomials 209 8.4 A Power Series for the Logarithm 212 8.5 The Cauchy Integral Remainder Theorem 215 8.6 A Nonanalytic, Infinitely Differentiable Function 221 8.7 The Weierstrass Approximation Theorem 223 9 SEQUENCES AND SERIES OF FUNCTIONS 228 9.1 Sequences and Series of Numbers 228 9.2 Pointwise Convergence of Sequences of Functions 241 9.3 Uniform Convergence of Sequences of Functions 245 9.4 The Uniform limit of Functions 249 9.5 Power Series 255 9.6 A Continuous Nowhere Differentiable Function 264 10 THE EUCLIDEAN SPACE JRn 269 10.1 The Linear Structure of JRn and the Scalar Product 269 10.2 Convergence of Sequences in ${\\mathbb R}^n$ 277 10.3 Open Sets and Closed Sets in ${\\mathbb R}^n$ 282 11 CONTINUITY, COMPACTNESS, AND CONNECTEDNESS 290 11.1 Continuous Functions and Mappings 290 11.2 Sequential Compactness, Extreme Values, and Uniform Continuity 298 11.3* Pathwise Connectedness and the Intermediate Value Theorem 304 11.4* Connectedness and the Intermediate Value Property 310 12* METRIC SPACES 314 12.1 Open Sets, Closed Sets, and Sequential Convergence 314 12.2 Completeness and the Contraction Mapping Principle 322 12.3 The Existence Theorem for Nonlinear Differential Equations 328 12.4 Continuous Mappings between Metric Spaces 337 12.5 Sequential Compactness and Connectedness 342 13 DIFFERENTIATING FUNCTIONS OF SEVERAL VARIABLES 348 13.1 Limits 348 13.2 Partial Derivatives 353 13.3 The Mean Value Theorem and Directional Derivatives 364 14 LOCAL APPROXIMATION OF REAL-VALUED FUNCTIONS 372 14.1 First-Order Approximation, Tangent Planes, and Affine Functions 372 14.2* Quadratic Functions, Hessian Matrices, and Second Derivatives 380 14.3* Second-Order Approximation and the Second-Derivative Test 387 15 APPROXIMATING NONLINEAR MAPPINGS BY LINEAR MAPPINGS 394 15.1 Linear Mappings and Matrices 394 15.2 The Derivative Matrix and the Differential 407 15.3 The Chain Rule 414 16 IMAGES AND INVERSES: THE INVERSE FUNCTION THEOREM 421 16.1 Functions of a Single Variable and Maps in the Plane 421 16.2 Stability of Nonlinear Mappings 429 16.3 A Minimization Principle and the General Inverse Function Theorem 433 17 THE IMPLICIT FUNCTION THEOREM AND ITS APPLICATIONS 440 17.1 A Scalar Equation in Two Unknowns: Dini\'s Theorem 440 17.2 The General Implicit Function Theorem 449 17.3 Equations of Surfaces and Paths in ${\\mathbb R}^3$ 454 17.4 Constrained Extrema Problems and Lagrange Multipliers 460 18 INTEGRATING FUNCTIONS OF SEVERAL VARIABLES 470 18.1 Integration of Functions on Generalized Rectangles 470 18.2 Continuity and Integrability 482 18.3 Integration of Functions on Jordan Domains 489 19 ITERATED INTEGRATION AND CHANGES OF VARIABLES 498 19.1 Fubini\'s Theorem 498 19.2 The Change of Variables Theorem: Statements and Examples 505 19.3 Proof of the Change of Variables Theorem 510 20 LINE AND SURFACE INTEGRALS 520 20.1 Arclength and Line Integrals 520 20.2 Surface Area and Surface Integrals 533 20.3 The Integral Formulas of Green and Stokes 543 A CONSEQUENCES OF THE FIELD AND POSITIVITY AXIOMS 559 A.l The Field Axioms and Their Consequences 559 A.2 The Positivity Axioms and Their Consequences 563 B LINEAR ALGEBRA 565 Index 581