ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Algorithms and Data Structures

دانلود کتاب الگوریتم های پیشرفته و ساختارهای داده

Advanced Algorithms and Data Structures

مشخصات کتاب

Advanced Algorithms and Data Structures

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781617295485 
ناشر: Manning Publications Co. 
سال نشر: 2021 
تعداد صفحات:  
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 Mb 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Advanced Algorithms and Data Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب الگوریتم های پیشرفته و ساختارهای داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Advanced Algorithms and Data Structures
contents
foreword
preface
	Welcome to Advanced Algorithms and Data Structures
acknowledgments
about this book
	Who should read this book?
	How this book is organized: a roadmap
	About the code
	liveBook discussion forum
about the author
about the cover illustration
	Introducing data structures
		1.1 Data structures
			1.1.1 Defining a data structure
			1.1.2 Describing a data structure
			1.1.3 Algorithms and data structures: Is there a difference?
		1.2 Setting goals: Your expectations after reading this book
		1.3 Packing your knapsack: Data structures meet the real world
			1.3.1 Abstracting the problem away
			1.3.2 Looking for solutions
			1.3.3 Algorithms to the rescue
			1.3.4 Thinking (literally) outside of the box
			1.3.5 Happy ending
Chapter 1: Introducing data structures
Part 1: Improving over basic data structures
	Chapter 2: Improving priority queues: d-way heaps
		2.1 Structure of this chapter
		2.2 The problem: Handling priority
			2.2.1 Priority in practice: Bug tracking
		2.3 Solutions at hand: Keeping a sorted list
			2.3.1 From sorted lists to priority queues
		2.4 Describing the data structure API: Priority queues
			2.4.1 Priority queue at work
			2.4.2 Priority matters: Generalize FIFO
		2.5 Concrete data structures
			2.5.1 Comparing performance
			2.5.2 What’s the right concrete data structure?
			2.5.3 Heap
			2.5.4 Priority, min-heap, and max-heap
			2.5.5 Advanced variant: d-ary heap
		2.6 How to implement a heap
			2.6.1 BubbleUp
			2.6.2 PushDown
			2.6.3 Insert
			2.6.4 Top
			2.6.5 Update
			2.6.6 Dealing with duplicates
			2.6.7 Heapify
			2.6.8 Beyond API methods: Contains
			2.6.9 Performance recap
			2.6.10 From pseudo-code to implementation
		2.7 Use case: Find the k largest elements
			2.7.1 The right data structure . . .
			2.7.2 . . . and the right use
			2.7.3 Coding it up
		2.8 More use cases
			2.8.1 Minimum distance in graphs: Dijkstra
			2.8.2 More graphs: Prim's algorithm
			2.8.3 Data compression: Huffman codes
		2.9 Analysis of branching factor
			2.9.1 Do we need d-ary heaps?
			2.9.2 Running time
			2.9.3 Finding the optimal branching factor
			2.9.4 Branching factor vs memory
		2.10 Performance analysis: Finding the best branching factor
			2.10.1 Please welcome profiling
			2.10.2 Interpreting results
			2.10.3 The mystery with heapify
			2.10.4 Choosing the best branching factor
	Chapter 3: Treaps: Using randomization to balance binary search trees
		3.1 Problem: Multi-indexing
			3.1.1 The gist of the solution
		3.2 Solution: Description and API
		3.3 Treap
			3.3.1 Rotations
			3.3.2 A few design questions
			3.3.3 Implementing search
			3.3.4 Insert
			3.3.5 Delete
			3.3.6 Top, peek, and update
			3.3.7 Min, max
			3.3.8 Performance recap
		3.4 Applications: Randomized treaps
			3.4.1 Balanced trees
			3.4.2 Introducing randomization
			3.4.3 Applications of Randomized Treaps
		3.5 Performance analysis and profiling
			3.5.1 Theory: Expected height
			3.5.2 Profiling height
			3.5.3 Profiling running time
			3.5.4 Profiling memory usage
			3.5.5 Conclusions
	Chapter 4: Bloom filters: Reducing the memory for tracking content
		4.1 The dictionary problem: Keeping track of things
		4.2 Alternatives to implementing a dictionary
		4.3 Describing the data structure API: Associative array
		4.4 Concrete data structures
			4.4.1 Unsorted array: Fast insertion, slow search
			4.4.2 Sorted arrays and binary search: Slow insertion, fast(-ish) search
			4.4.3 Hash table: Constant-time on average, unless you need ordering
			4.4.4 Binary search tree: Every operation is logarithmic
			4.4.5 Bloom filter: As fast as hash tables, but saves memory (with a catch)
		4.5 Under the hood: How do Bloom filters work?
		4.6 Implementation
			4.6.1 Using a Bloom filter
			4.6.2 Reading and writing bits
			4.6.3 Find where a key is stored
			4.6.4 Generating hash functions
			4.6.5 Constructor
			4.6.6 Checking a key
			4.6.7 Storing a key
			4.6.8 Estimating accuracy
		4.7 Applications
			4.7.1 Cache
			4.7.2 Routers
			4.7.3 Crawler
			4.7.4 IO fetcher
			4.7.5 Spell checker
			4.7.6 Distributed databases and file systems
		4.8 Why Bloom filters work
			4.8.1 Why there are no false negatives . . .
			4.8.2 . . . But there are false positives
			4.8.3 Bloom filters as randomized algorithms
		4.9 Performance analysis
			4.9.1 Running time
			4.9.2 Constructor
			4.9.3 Storing an element
			4.9.4 Looking up an element
		4.10 Estimating Bloom filter precision
			4.10.1 Explanation of the false-positive ratio formula
		4.11 Improved variants
			4.11.1 Bloomier filter
			4.11.2 Combining Bloom filters
			4.11.3 Layered Bloom filter
			4.11.4 Compressed Bloom filter
			4.11.5 Scalable Bloom filter
	Chapter 5: Disjoint sets: Sub-linear time processing
		5.1 The distinct subsets problem
		5.2 Reasoning on solutions
		5.3 Describing the data structure API: Disjoint set
		5.4 Naïve solution
			5.4.1 Implementing naïve solution
		5.5 Using a tree-like structure
			5.5.1 From list to trees
			5.5.2 Implementing the tree version
		5.6 Heuristics to improve the running time
			5.6.1 Path compression
			5.6.2 Implementing balancing and path compression
		5.7 Applications
			5.7.1 Graphs: Connected components
			5.7.2 Graphs: Kruskal’s algorithm for minimum spanning tree
			5.7.3 Clustering
			5.7.4 Unification
	Chapter 6: Trie, radix trie: Efficient string search
		6.1 Spell-check
			6.1.1 A prncess, a Damon, and an elf walkz into a bar
			6.1.2 Compression is the key
			6.1.3 Description and API
		6.2 Trie
			6.2.1 Why is it better again?
			6.2.2 Search
			6.2.3 Insert
			6.2.4 Remove
			6.2.5 Longest prefix
			6.2.6 Keys matching a prefix
			6.2.7 When should we use tries?
		6.3 Radix tries
			6.3.1 Nodes and edges
			6.3.2 Search
			6.3.3 Insert
			6.3.4 Remove
			6.3.5 Longest common prefix
			6.3.6 Keys starting with a prefix
		6.4 Applications
			6.4.1 Spell-checker
			6.4.2 String similarity
			6.4.3 String sorting
			6.4.4 T9
			6.4.5 Autocomplete
	Chapter 7: Use case: LRU cache
		7.1 Don’t compute things twice
		7.2 First attempt: Remembering values
			7.2.1 Description and API
			7.2.2 Fresh data, please
			7.2.3 Handling asynchronous calls
			7.2.4 Marking cache values as “Loading”
		7.3 Memory is not enough (literally)
		7.4 Getting rid of stale data: LRU cache
			7.4.1 Sometimes you have to double down on problems
			7.4.2 Temporal ordering
			7.4.3 Performance
		7.5 When fresher data is more valuable: LFU
			7.5.1 So how do we choose?
			7.5.2 What makes LFU different
			7.5.3 Performance
			7.5.4 Problems with LFU
		7.6 How to use cache is just as important
		7.7 Introducing synchronization
			7.7.1 Solving concurrency (in Java)
			7.7.2 Introducing locks
			7.7.3 Acquiring a lock
			7.7.4 Reentrant locks
			7.7.5 Read locks
			7.7.6 Other approaches to concurrency
		7.8 Cache applications
Part 2: Multidemensional queries
	Chapter 8: Nearest neighbors search
		8.1 The nearest neighbors search problem
		8.2 Solutions
			8.2.1 First attempts
			8.2.2 Sometimes caching is not the answer
			8.2.3 Simplifying things to get a hint
			8.2.4 Carefully choose a data structure
		8.3 Description and API
		8.4 Moving to k-dimensional spaces
			8.4.1 Unidimensional binary search
			8.4.2 Moving to higher dimensions
			8.4.3 Modeling 2-D partitions with a data structure
	Chapter 9: K-d trees: Multidimensional data indexing
		9.1 Right where we left off
		9.2 Moving to k-D spaces: Cycle through dimensions
			9.2.1 Constructing the BST
			9.2.2 Invariants
			9.2.3 The importance of being balanced
		9.3 Methods
			9.3.1 Search
			9.3.2 Insert
			9.3.3 Balanced tree
			9.3.4 Remove
			9.3.5 Nearest neighbor
			9.3.6 Region search
			9.3.7 A recap of all methods
		9.4 Limits and possible improvements
	Chapter 10: Similarity Search Trees: Approximate nearest neighbors search for image retrieval
		10.1 Right where we left off
			10.1.1 A new (more complex) example
			10.1.2 Overcoming k-d trees’ flaws
		10.2 R-tree
			10.2.1 A step back: Introducing B-trees
			10.2.2 From B-Tree to R-tree
			10.2.3 Inserting points in an R-tree
			10.2.4 Search
		10.3 Similarity search tree
			10.3.1 SS-tree search
			10.3.2 Insert
			10.3.3 Insertion: Variance, means, and projections
			10.3.4 Insertion: Split nodes
			10.3.5 Delete
		10.4 Similarity Search
			10.4.1 Nearest neighbor search
			10.4.2 Region search
			10.4.3 Approximated similarity search
		10.5 SS+-tree
			10.5.1 Are SS-trees better?
			10.5.2 Mitigating hyper-sphere limitations
			10.5.3 Improved split heuristic
			10.5.4 Reducing overlap
	Chapter 11: Applications of nearest neighbor search
		11.1 An application: Find nearest hub
			11.1.1 Sketching a solution
			11.1.2 Trouble in paradise
		11.2 Centralized application
			11.2.1 Filtering points
			11.2.2 Complex decisions
		11.3 Moving to a distributed application
			11.3.1 Issues handling HTTP communication
			11.3.2 Keeping the inventory in sync
			11.3.3 Lessons learned
		11.4 Other applications
			11.4.1 Color reduction
			11.4.2 Particle interaction
			11.4.3 Multidimensional DB queries optimization
			11.4.4 Clustering
	Chapter 12: Clustering
		12.1 Intro to clustering
			12.1.1 Types of learning
			12.1.2 Types of clustering
		12.2 K-means
			12.2.1 Issues with k-means
			12.2.2 The curse of dimensionality strikes again
			12.2.3 K-means performance analysis
			12.2.4 Boosting k-means with k-d trees
			12.2.5 Final remarks on k-means
		12.3 DBSCAN
			12.3.1 Directly vs density-reachable
			12.3.2 From definitions to an algorithm
			12.3.3 And finally, an implementation
			12.3.4 Pros and cons of DBSCAN
		12.4 OPTICS
			12.4.1 Definitions
			12.4.2 OPTICS algorithm
			12.4.3 From reachability distance to clustering
			12.4.4 Hierarchical clustering
			12.4.5 Performance analysis and final considerations
		12.5 Evaluating clustering results: Evaluation metrics
			12.5.1 Interpreting the results
	Chapter 13: Parallel clustering: MapReduce and canopy clustering
		13.1 Parallelization
			13.1.1 Parallel vs distributed
			13.1.2 Parallelizing k-means
			13.1.3 Canopy clustering
			13.1.4 Applying canopy clustering
		13.2 MapReduce
			13.2.1 Imagine you are Donald Duck . . .
			13.2.2 First map, then reduce
			13.2.3 There is more under the hood
		13.3 MapReduce k-means
			13.3.1 Parallelizing canopy clustering
			13.3.2 Centroid initialization with canopy clustering
			13.3.3 MapReduce canopy clustering
		13.4 MapReduce DBSCAN
Part 3: Planar graphs and minimum crossing number
	Chapter 14: An introduction to graphs: Finding paths of minimum distance
		14.1 Definitions
			14.1.1 Implementing graphs
			14.1.2 Graphs as algebraic types
			14.1.3 Pseudo-code
		14.2 Graph properties
			14.2.1 Undirected
			14.2.2 Connected
			14.2.3 Acyclic
		14.3 Graph traversal: BFS and DFS
			14.3.1 Optimizing delivery routes
			14.3.2 Breadth first search
			14.3.3 Reconstructing the path to target
			14.3.4 Depth first search
			14.3.5 It’s queue vs stack again
			14.3.6 Best route to deliver a parcel
		14.4 Shortest path in weighted graphs: Dijkstra
			14.4.1 Differences with BFS
			14.4.2 Implementation
			14.4.3 Analysis
			14.4.4 Shortest route for deliveries
		14.5 Beyond Dijkstra’s algorithm: A*
			14.5.1 How good is A* search?
			14.5.2 Heuristics as a way to balance real-time data
	Chapter 15: Graph embeddings and planarity: Drawing graphs with minimal edge intersections
		15.1 Graph embeddings
			15.1.1 Some basic definitions
			15.1.2 Complete and bipartite graphs
		15.2 Planar graphs
			15.2.1 Using Kuratowski’s theorem in practice
			15.2.2 Planarity testing
			15.2.3 A naïve algorithm for planarity testing
			15.2.4 Improving performance
			15.2.5 Efficient algorithms
		15.3 Non-planar graphs
			15.3.1 Finding the crossing number
			15.3.2 Rectilinear crossing number
		15.4 Edge intersections
			15.4.1 Straight-line segments
			15.4.2 Polylines
			15.4.3 Bézier curves
			15.4.4 Intersections between quadratic Bézier curves
			15.4.5 Vertex-vertex and edge-vertex intersections
	Chapter 16: Gradient descent: Optimization problems (not just) on graphs
		16.1 Heuristics for the crossing number
			16.1.1 Did you just say heuristics?
			16.1.2 Extending to curve-line edges
		16.2 How optimization works
			16.2.1 Cost functions
			16.2.2 Step functions and local minima
			16.2.3 Optimizing random sampling
		16.3 Gradient descent
			16.3.1 The math of gradient descent
			16.3.2 Geometrical interpretation
			16.3.3 When is gradient descent appliable?
			16.3.4 Problems with gradient descent
		16.4 Applications of gradient descent
			16.4.1 An example: Linear regression
		16.5 Gradient descent for graph embedding
			16.5.1 A different criterion
			16.5.2 Implementation
	Chapter 17: Simulated annealing: Optimization beyond local minima
		17.1 Simulated annealing
			17.1.1 Sometimes you need to climb up to get to the bottom
			17.1.2 Implementation
			17.1.3 Why simulated annealing works
			17.1.4 Short-range vs long-range transitions
			17.1.5 Variants
			17.1.6 Simulated annealing vs gradient descent: Which one should I use?
		17.2 Simulated annealing + traveling salesman
			17.2.1 Exact vs approximated solutions
			17.2.2 Visualizing cost
			17.2.3 Pruning the domain
			17.2.4 State transitions
			17.2.5 Adjacent vs random swaps
			17.2.6 Applications of TSP
		17.3 Simulated annealing and graph embedding
			17.3.1 Minimum edge crossing
			17.3.2 Force-directed drawing
	Chapter 18: Genetic algorithms: Biologically inspired, fast- converging optimization
		18.1 Genetic algorithms
			18.1.1 Inspired by nature
			18.1.2 Chromosomes
			18.1.3 Population
			18.1.4 Fitness
			18.1.5 Natural selection
			18.1.6 Selecting individuals for mating
			18.1.7 Crossover
			18.1.8 Mutations
			18.1.9 The genetic algorithm template
			18.1.10 When does the genetic algorithm work best?
		18.2 TSP
			18.2.1 Fitness, chromosomes, and initialization
			18.2.2 Mutations
			18.2.3 Crossover
			18.2.4 Results and parameters tuning
			18.2.5 Beyond TSP: Optimizing the routes of the whole fleet
		18.3 Minimum vertex cover
			18.3.1 Applications of vertex cover
			18.3.2 Implementing a genetic algorithm
		18.4 Other applications of the genetic algorithm
			18.4.1 Maximum flow
			18.4.2 Protein folding
			18.4.3 Beyond genetic algorithms
			18.4.4 Algorithms, beyond this book
appendix A: A quick guide to pseudo-code
	A.1 Variables and basics
	A.2 Arrays
	A.3 Conditional instructions
		A.3.1 Else-if
		A.3.2 Switch
	A.4 Loops
		A.4.1 For loop
		A.4.2 While loop
		A.4.3 Break and continue
	A.5 Blocks and indent
	A.6 Functions
		A.6.1 Overloading and default arguments
		A.6.2 Tuples
		A.6.3 Tuples and destructuring objects
appendix B: Big-O notation
	B.1 Algorithms and performance
	B.2 The RAM model
	B.3 Order of magnitude
	B.4 Notation
	B.5 Examples
appendix C: Core data structures
	C.1 Core data structures
	C.2 Array
	C.3 Linked List
	C.4 Tree
		C.4.1 Binary search trees
	C.5 Hash table
		C.5.1 Storing key-value pairs
		C.5.2 Hashing
		C.5.3 Conflicts resolution in hashing
		C.5.4 Performance
	C.6 Comparative analysis of core data structures
appendix D: Containers as priority queues
	D.1 Bag
	D.2 Stack
	D.3 Queue
	D.4 A comparative analysis of containers
appendix E: Recursion
	E.1 Simple recursion
		E.1.1 Pitfalls
		E.1.2 Good recursion
	E.2 Tail recursion
	E.3 Mutual recursion
appendix F: Classification problems and randomnized algorithm metrics
	F.1 Decision problems
	F.2 Las Vegas algorithms
	F.3 Monte Carlo algorithms
	F.4 Classification metrics
		F.4.1 Accuracy
		F.4.2 Precision and recall
		F.4.3 Other metrics and recap
index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




نظرات کاربران