دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الگوریتم ها و ساختارهای داده ها: شناخت الگو ویرایش: 1 نویسندگان: Loveleen Gaur (editor), Arun Solanki (editor), Samuel Fosso Wamba (editor), Noor Zaman Jhanjhi (editor) سری: ISBN (شابک) : 0367641690, 9780367641696 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 283 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Advanced AI Techniques and Applications in Bioinformatics (Smart and Intelligent Computing in Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک ها و کاربردهای پیشرفته هوش مصنوعی در بیوانفورماتیک (محاسبات هوشمند و هوشمند در مهندسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای پیشرفته هوش مصنوعی برای حل و فصل جنبههای مشکلساز مختلف در زمینه بیوانفورماتیک ضروری هستند. این کتاب رویکردهای اخیر در روشهای هوش مصنوعی و یادگیری ماشین و کاربردهای آنها در ویرایش ژنوم و ژن، طبقهبندی کشف داروهای سرطان و الگوریتمهای تاشو پروتئین را پوشش میدهد. یادگیری عمیق، که به طور گسترده در پردازش تصویر استفاده می شود، در بیوانفورماتیک نیز به عنوان یکی از محبوب ترین رویکردهای هوش مصنوعی قابل استفاده است. طیف گسترده ای از کاربردهای مورد بحث در این کتاب منبعی ضروری برای دانشمندان کامپیوتر، مهندسان، زیست شناسان، ریاضیدانان، پزشکان و متخصصان انفورماتیک پزشکی است.
ویژگی ها:
The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists.
Features:
Cover Half Title Series Page Title Page Copyright Page Table of Contents Contributors Editors Chapter 1 An Artificial Intelligence-based Expert System for the Initial Screening of COVID-19 1.1 Introduction 1.2 Review of Literature 1.3 Material and Method 1.3.1 Hierarchical Fuzzy System 1.3.2 Methodology 1.4 Results 1.4.1 Fuzzy Inference System 1.4.2 Membership Functions 1.4.3 Rule Editor 1.4.4 Fuzzification and Defuzzification 1.4.5 Rule Viewer 1.4.6 Surface Viewer 1.4.7 Graphical User Interface 1.5 Conclusion Bibliography Chapter 2 An Insight into the Potential Role of Artificial Intelligence in Bioinformatics 2.1 Introduction 2.2 Artificial Intelligence 2.2.1 Objectives of AI 2.3 Need for Integration of AI and Bioinformatics 2.4 Application of AI in Bioinformatics 2.4.1 Data and Knowledge Management 2.4.2 Information Extraction in Biological Literature 2.4.3 Gene and Noncoding RNA Prediction 2.4.4 Protein Structure Prediction 2.4.5 Evolutionary Studies 2.4.6 Drug Discovery 2.4.7 Vaccine Development 2.5 Conclusion and Future Prospects Bibliography Chapter 3 AI-Based Natural Language Processing for the Generation of Meaningful Information Electronic Health Record (EHR) Data 3.1 Introduction 3.2 Related Work 3.3 Artificial Intelligence 3.4 Machine Learning Overview 3.4.1 Approaches to Machine Learning 3.5 Deep Learning Overview 3.5.1 Multi-Layer Perceptron (MLP) 3.5.2 Convolutional Neural Networks (CNN) 3.5.3 Recurrent Neural Networks 3.5.4 Auto Encoders (AE) 3.5.5 Restricted Boltzmann Machine (RBM) 3.6 Natural Language Processing (NLP) 3.7 Electronic Health Record Systems (EHR) 3.8 Deep Learning-Based EHR 3.8.1 EHR Information Extraction in Deep Learning 3.8.1.1 Concept of Single Extraction 3.8.1.2 Extraction of Temporal Event 3.8.1.3 Relation of Extraction 3.8.1.4 Expansion of Abbreviation 3.9 Representation of Learning in EHR 3.10 Methods of Evaluation for EHR Representation Learning 3.10.1 Outcome Prediction in EHR Representation Learning 3.11 The Case for NLP Systems as an EHR-Based Clinical Research Tool 3.11.1 Use Cases for NLP System in Asthma Research 3.12 Implications of NLP for EHR Based on Clinical Research and Care 3.13 Conclusion and Future Directions Bibliography Chapter 4 AI and Genomes for Decisions Regarding the Expression of Genes 4.1 Introduction to Artificial Intelligence (AI) 4.2 AI in Clinical Genomics 4.2.1 Variant Calling 4.2.2 Variant Classification and Annotation of Genomes 4.2.2.1 Coding Mutants/Variants 4.2.2.2 Non-Coding Mutants/Variants 4.3 AI in Gene Expression Data Analysis 4.3.1 Dimensionality Reduction 4.3.1.1 Feature Extraction 4.3.1.2 Feature Selection 4.3.2 Clustering 4.3.3 Bayesian Networks 4.4 Conclusion Bibliography Chapter 5 Implementation of Donor Recognition and Selection for Bioinformatics Blood Bank Application 5.1 Introduction 5.1.1 About Software Application Development 5.1.2 About the Blood Bank at JPMC 5.1.2.1 Process for Blood Collection 5.1.2.2 Process for Blood Issuance 5.1.3 Biometrics-AI application 5.1.4 What Is Fingerprinting 5.1.5 Problem Statement 5.2 Literature Review 5.2.1 Data Collections and Interviews 5.2.1.1 Blood Compatibility 5.3 Methodology 5.3.1 Bioinformatics Blood Bank Application Framework 5.3.2 System Analysis 5.3.3 Gathering Information 5.3.3.1 Observation 5.3.3.2 Record Review 5.3.4 System Design 5.3.5 Software Environment 5.3.6 AI-Software Application Platform 5.3.7 Database Management System (DBMS) 5.3.8 Reporting Environment 5.3.8.1 Crystal Reports 5.3.8.2 SQL Server Reporting Services (SSRS) 5.3.9 Hardware and Software Environment 5.3.10 System Development 5.3.11 Database Design 5.3.12 Alpha Testing 5.3.13 Beta Testing 5.3.14 Test Deliverables 5.4 Result and Discussion 5.4.1 Relationships 5.4.2 Normalization 5.4.3 Code Design 5.5 Conclusion 5.5.1 Implementation and Evaluation 5.5.2 Results 5.5.3 Limitations 5.5.4 Conclusion 5.5.5 Extensibility Bibliography Appendix Application Process Flow Chapter 6 Deep Learning Techniques for miRNA Sequence Analysis 6.1 Introduction 6.1.1 Biogenesis of miRNA 6.1.2 Biology behind miRNA-Target (mRNA) Interactions 6.2 miRNA Sequence Analysis 6.3 Deep Learning: Conceptual Overview 6.3.1 Deep Neural Networks (DNNs) 6.3.2 Convolutional Neural Networks (CNNs) 6.3.3 Autoencoders 6.3.4 Recurrent Neural Networks (RNNs) 6.3.5 Long Short-Term Memory (LSTM) 6.4 Deep Learning: Applications for Pre-miRNA Identification 6.5 Deep Learning: Applications for miRNA Target Prediction 6.6 Critical Observations and Future Directions 6.7 Conclusion Bibliography Chapter 7 Role of Machine Intelligence in Cancer Drug Discovery and Development 7.1 Introduction 7.2 Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in Drug Discovery and Development 7.3 Challenges to Overcome 7.4 Future Prospects and Conclusion Abbreviations Bibliography Chapter 8 Genome and Gene Editing by Artificial Intelligence Programs 8.1 Introduction 8.2 Genome Sequencing and Editing 8.2.1 The Gene-Editing Opportunities and Threats 8.3 Personalized Therapy and Life-Saving Services in the Context of Genome Editing 8.3.1 Genome Editing Initiative and Pharmaceuticals Implementation for Designing Drugs 8.4 CRISPR and Genome Editing 8.4.1 Genome Editing for the Next Generation in the Context of Medicine 8.5 Epigenetic and Germline Editing Positions 8.6 Natural Science in the Context of Artificial Intelligence Platform 8.7 Optimization of Human Bio-Machinery 8.8 Genomics Is Revolutionized by Artificial Intelligence 8.9 Artificial Intelligence Captaincy and Frontiers for the Direct Competitors of Genomics 8.10 Artificial Intelligence and Gene Editing Mechanisms 8.11 Scientists Used AI to Improve Gene-Editing Accuracy 8.11.1 Gene Editing and Biomedical Engineering Systems 8.11.2 Training Models for Gene Editing in the Context of Machine Learning 8.11.3 Off-Target Scores 8.11.4 End-to-End Guide Design 8.12 Efficient Genome Editing and the Optimization of Humans’ Health 8.13 Further Research and Development for Gene Editing with AI 8.13.1 Regulatory Considerations of Gene Editing and Artificial Intelligence 8.14 Policies and Recommendations of Genome Editing with AI 8.15 Conclusion 8.16 Future Prospects of AI Bibliography Chapter 9 Artificial Neural Network (ANN) Techniques in Solving the Protein Folding Problem 9.1 Introduction 9.2 Role of Molten Globules in Protein Folding 9.3 Importance of Protein Folding Studies 9.4 Concept of Artificial Neural Networks 9.5 Criteria and Evaluation of Applications of ANN in the Protein Folding Problem 9.6 Bio-Inspired Optimization Algorithms that Can Be Used for Protein Folding Study in Association with ANN 9.7 Implementation of Artificial Neural Network Methods in Protein Folding Studies 9.8 Limitations of Current Protein Folding Prediction Algorithms 9.9 Conclusion Bibliography Chapter 10 Application of Machine Learning and Molecular Modeling in Drug Discovery and Cheminformatics 10.1 Introduction 10.2 Machine Learning Methods in Cheminformatics 10.2.1 Machine Learning Platforms 10.2.2 Representation of Small Molecules 10.2.3 Training Set Creation 10.2.4 Model Evaluation Methods 10.2.5 Model Evaluation Metrics 10.2.6 Feature Reduction 10.3 Molecular Modeling Methods in Cheminformatics 10.3.1 Virtual Screening 10.3.2 Pharmacophore Modeling 10.3.3 Molecular Docking 10.3.4 Molecular Simulation Approach to Drug Screening 10.4 Conclusion and Future Directions Bibliography Chapter 11 Role of Advanced Artificial Intelligence Techniques in Bioinformatics 11.1 Introduction 11.2 Bioinformatics: Analyzing Life Data at the Molecular Level 11.2.1 DNA 11.2.2 RNA 11.2.3 Proteins 11.2.4 Glycans 11.3 Application of AI in Bioinformatics 11.4 Symbolic Machine Learning 11.4.1 Nearest Neighbor Approaches in Bioinformatics 11.4.2 Application in Viral Protease Cleavage Prediction 11.5 Neural Networks in Bioinformatics 11.6 Evolutionary Computation in Bioinformatics 11.7 Deep Learning in Informatics 11.8 Future Trends 11.9 Conclusion Bibliography Chapter 12 A Bioinformatics Perspective on Artificial Intelligence in Healthcare and Diagnosis: Applications, Implications, and Limitations 12.1 Introduction 12.2 The Data Overload 12.3 Big Healthcare Data 12.3.1 Big Data from Electronic Health Records 12.3.2 Big Data from Omics 12.3.3 Big Data from Medical Images 12.4 Data Preprocess and Data Integration 12.5 Data Exploration 12.5.1 Artificial Intelligence in Clinical Diagnostics 12.5.2 Artificial Intelligence in EHR-Based Diagnostics 12.5.3 Artificial Intelligence in Image-Based Clinical Diagnostics 12.5.4 Artificial Intelligence in Genomics-Based Clinical Diagnostics 12.6 Machine Learning in Cancer Prognosis 12.7 Limitations of Artificial Intelligence in Healthcare 12.7.1 Data Dependency and Inconsistent Data 12.7.2 Infrastructure Requirements 12.7.3 Data Privacy and Security 12.8 Discussion Bibliography Chapter 13 Accelerating Translational Medical Research by Leveraging Artificial Intelligence: Digital Healthcare 13.1 Introduction 13.1.1 Origin of Artificial Intelligence 13.1.2 A.I. and Big Data 13.1.3 Optimizing the Machine–Human Interface 13.1.4 Role of Artificial Intelligence in Clinical Research 13.1.5 The Core Elements of Smart Healthcare Communities (S.H.C) 13.2 Related Study 13.2.1 Problem Statement 13.2.2 Technology Support: Proposed Solution 13.2.3 Research Challenges/Gaps and Infrastructure Requirements 13.3 Methodology: Phases Involved in the Adoption of A.I. for Translation Research 13.4 Approved Proprietary A.I. Algorithms 13.5 Digital Transformation and Interoperability 13.6 Limitations and Future Perspectives 13.7 Key-Points Drawn 13.8 Conclusion Bibliography Index