دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [11 ed.] نویسندگان: Leonard A. Levin, Siv F. E. Nilsson, James Ver Hoeve, Samuel Wu, Paul L. Kaufman, Albert Alm سری: ISBN (شابک) : 0323057144, 9780323057141 ناشر: Saunders (Mosby - elsevier) سال نشر: 2011 تعداد صفحات: 820 زبان: English فرمت فایل : CHM (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 Mb
در صورت تبدیل فایل کتاب Adler's Physiology of the Eye: Expert Consult - Online and Print به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیولوژی چشم آدلر: مشاوره متخصص - بصورت آنلاین و چاپی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دکتر پل ال. کافمن، آلبرت آلم، لئونارد آ لوین، سیو اف. ای. نیلسون، جیمز ور هوو، و ساموئل وو نسخه یازدهم متن کلاسیک فیزیولوژی چشم آدلر را ارائه می کنند که برای افزایش درک شما از عملکرد چشم به روز شده است. این نسخه تمام رنگی و کاربرپسند آخرین اکتشافات مولکولی، ژنتیکی و بیوشیمیایی را به تصویر می کشد و دانش و بینش بی نظیری را در مورد فیزیولوژی چشم و ساختارهای آن به شما ارائه می دهد. یک سازمان جدید بر اساس عملکرد، به جای آناتومی، به شما کمک می کند تا ارتباط قوی تری بین اصول فیزیولوژیکی و عملکرد بالینی ایجاد کنید. و بیش از 1000 تصویر تمام رنگی جدید عالی به روشن شدن مفاهیم پیچیده کمک می کند. همچنین می توانید به محتویات کامل به صورت آنلاین در www.expertconsult.com دسترسی داشته باشید. درک خود را از اصول فیزیولوژیکی که زیربنای حدت بینایی، دید رنگی، گردش چشم، عضله خارج چشمی و موارد دیگر است، عمیق تر کنید. آخرین دانش در این زمینه، از جمله جدیدترین اکتشافات مولکولی، ژنتیکی و بیوشیمیایی را به دست آورید. ارتباط قویتری بین فیزیولوژی و عمل بالینی با کمک افزایش تأکید بالینی در سرتاسر، و همچنین یک سازمان جدید بر اساس عملکرد و نه بر اساس آناتومی ایجاد کنید. بهتر است همه مفاهیم را با مشاهده 1000 تصویر واضح و تمام رنگی تجسم کنید. به محتویات کامل به صورت آنلاین در expertconsult.com دسترسی داشته باشید. Adler's جدید و بهبود یافته تسلط بر علوم پایه چشم را جذاب و آسان می کند
Drs. Paul L. Kaufman, Albert Alm, Leonard A Levin, Siv F. E. Nilsson, James Ver Hoeve, and Samuel Wu present the 11th Edition of the classic text Adler's Physiology of the Eye, updated to enhance your understanding of ocular function. This full-color, user-friendly edition captures the latest molecular, genetic, and biochemical discoveries and offers you unparalleled knowledge and insight into the physiology of the eye and its structures. A new organization by function, rather than anatomy, helps you make a stronger connection between physiological principles and clinical practice; and more than 1,000 great new full-color illustrations help clarify complex concepts. You can also access the complete contents online at www.expertconsult.com.Deepen your grasp of the physiological principles that underlie visual acuity, color vision, ocular circulation, the extraocular muscle, and much more. Glean the latest knowledge in the field, including the most recent molecular, genetic, and biochemical discoveries. Make a stronger connection between physiology and clinical practice with the aid of an enhanced clinical emphasis throughout, as well as a new organization by function rather than by anatomy. Better visualize all concepts by viewing 1,000 clear, full-color illustrations. Access the complete contents online at expertconsult.com. The new and improved Adler's makes mastering the basic science of the eye engaging and easy
Cover......Page 1
ISBN: 9780323057141......Page 2
Copyright......Page 5
Preface......Page 8
List of Contributors......Page 9
Acknowledgements......Page 12
Dedication......Page 13
Axial length......Page 14
Emmetropization......Page 15
Neural processing......Page 16
Recognizing faces......Page 17
Recognizing movement......Page 18
Role of the cornea......Page 19
Role of the crystalline lens......Page 20
Rhodopsin......Page 21
Chart luminance......Page 22
Contrast sensitivity testing......Page 23
Recording contrast sensitivity......Page 25
Glare, tissue light scattering, and contrast sensitivity......Page 26
Cataracts and opacified posterior capsules......Page 28
Depth of focus......Page 29
Light scattering......Page 30
Natural defenses against light scattering......Page 32
Spherical aberration......Page 33
The aging eye......Page 34
Edge sharpening......Page 35
Vernier acuity......Page 36
Prevalence......Page 37
Components of ametropia......Page 38
References......Page 39
Wavefront optics......Page 41
Optical limitations to vision......Page 43
Monochromatic aberrations......Page 44
Aberrometry and wavefront sensing devices......Page 45
Visual disturbances associated with HOA......Page 47
Factors which limit the benefit of HOA correction......Page 48
Correcting HOA with spectacles, contact lenses and intraocular lenses......Page 50
References......Page 51
Introduction......Page 53
Accommodation......Page 54
The optical requirements for accommodation......Page 55
Depth of field......Page 56
The ciliary muscle......Page 57
The zonular fibers......Page 58
The crystalline lens......Page 60
The mechanism of accommodation......Page 61
Accommodative optical changes in the lens and eye......Page 62
The stimulus to accommodate......Page 68
The pharmacology of accommodation......Page 69
Measurement of accommodation......Page 70
Age-related changes in rhesus ciliary muscle......Page 72
Age-related changes in the zonule......Page 74
Age-related changes in the capsule......Page 75
Growth of the crystalline lens......Page 76
Loss of ability of the human lens to accommodate......Page 78
Age-related increase in stiffness of the human lens......Page 79
References......Page 81
Embryology, growth, development, and aging......Page 84
Major corneal reference points and measurements......Page 86
Light refraction......Page 90
Light transmission......Page 91
Collagen......Page 93
Keratocytes......Page 96
Proteoglycans......Page 98
Corneal nerves......Page 101
Corneal stromal wound healing......Page 102
Low-permeability barrier: the corneal epithelium......Page 105
High-permeability barrier: the corneal endothelium......Page 109
Leaky barrier function......Page 111
Metabolic pump function......Page 112
Corneal edema......Page 114
Basement membrane and glycocalyx......Page 118
Corneal stress......Page 119
Corneal stiffness, strength extensibility, and toughness......Page 120
Chronic biomechanical failure of the cornea – ectasia......Page 122
Drug delivery......Page 125
Ultraviolet light filtration......Page 127
Embryology, growth, development, and aging......Page 128
Major scleral reference points and measurements......Page 132
Mechanical properties......Page 133
Episcleral vasculature......Page 134
Drug delivery......Page 135
References......Page 138
The basics of lens refraction and transparency......Page 144
The early development of the lens......Page 146
Lens fiber cell differentiation......Page 148
Lens crystallins......Page 149
The lens fiber cell cytoskeleton......Page 150
Other cellular and biochemical specializations found in lens fiber cells......Page 151
The control of lens growth......Page 152
Overview......Page 153
Protection against oxidative damage......Page 154
Water and electrolyte balance......Page 155
Lens transparency and refraction......Page 156
The structure and development of the lens sutures......Page 157
The zonules......Page 158
General risk factors......Page 159
Age-related nuclear cataracts......Page 161
Age-related cortical cataracts......Page 163
Mixed cataracts......Page 164
Less common types of cataract......Page 165
Perspectives for preventing cataract blindness......Page 168
References......Page 170
Anatomy of the mature vitreous body......Page 177
The vitreoretinal interface......Page 178
Ultrastructural and biochemical aspects......Page 179
Biophysical aspects......Page 181
Structural changes......Page 184
Diffusion kinetics as an indicator of the biophysical status of the vitreous......Page 185
Posterior vitreous detachment......Page 187
Development of macular edema......Page 188
Normal conditions......Page 189
The vitreous body as a sensor for the physiology of surrounding structures......Page 190
Determination of the blood–retinal barrier, passive permeability and active transport for fluorescein in humans, based upon concentration changes in the vitreous body......Page 191
References......Page 192
Gross anatomy......Page 195
Cranial motor nerve innervation......Page 198
Orbital connective tissue......Page 199
Histological anatomy and physiologic implications......Page 200
Metabolism......Page 204
Proprioception and proprioceptors......Page 208
Development......Page 209
Strabismus......Page 210
Nystagmus......Page 211
Diseases where EOM are preferentially spared......Page 212
Diseases where EOM are preferentially involved......Page 215
References......Page 217
Quantifying eye rotations......Page 221
Head-fixed coordinates......Page 223
Listing’s law......Page 224
False torsion......Page 226
Neural control of ocular orientation......Page 227
Orbital mechanics can simplify neural control: extraocular pulleys......Page 229
References......Page 232
Binocular constraints on eye position control......Page 233
Feedback and feedforward control systems......Page 234
Cranial nerves: III, IV, & VI and motor nuclei......Page 235
Motor neuron response......Page 236
Extra-retinal signals......Page 237
Retinal signals......Page 238
Vestibulo-ocular reflex......Page 239
Static control of eye alignment (fixation)......Page 240
Conjugate smooth pursuit tracking......Page 242
Smooth vergence tracking system......Page 243
Rapid conjugate shifts of gaze direction (saccadic eye movements)......Page 244
Disconjugate shifts of gaze distance (the near response in symmetrical convergence)......Page 245
Interactions between conjugate and disconjugate eye movements (asymmetric vergence)......Page 246
Vergence gaze shifting system: the near triad and interactions with saccades......Page 248
Neurological disorders of the oculomotor system......Page 249
Gaze restrictions......Page 250
Saccade disorders......Page 252
References......Page 253
Vascular supply of the retina......Page 256
Perimacular pattern......Page 257
Vascular supply of the anterior segment......Page 259
Paracellular pathway......Page 260
Extracellular matrix......Page 261
Blood–aqueous barriers......Page 262
Techniques used in experimental animals......Page 263
Non-invasive techniques used in physiological and clinical research......Page 264
General hemodynamic considerations......Page 267
Ciliary circulation......Page 268
Retina and ONH......Page 269
Static exercises......Page 270
Hypoxia......Page 271
Hypercapnia......Page 272
Light/dark transition......Page 273
Control of arterial tone by endothelium or neuro-glial activity......Page 274
Endothelins......Page 275
Effects of vasoactive nerves......Page 276
Vasoconstrictors......Page 277
Diabetes......Page 278
References......Page 279
Physiology of aqueous humor formation......Page 287
Biochemistry of aqueous humor formation......Page 288
Blood–aqueous barrier......Page 291
Active transport......Page 292
Cholinergic mechanisms......Page 293
Other agents......Page 294
Fluid mechanics......Page 296
Structural components......Page 297
Pumping model for trabecular outflow......Page 298
Active involvement of the TM in regulating outflow......Page 299
Extracellular matrix accumulation and POAG......Page 300
Conventional (trabecular) outflow......Page 302
Alterations in cholinergic sensitivity of the outflow apparatus......Page 303
Conventional (trabecular) outflow......Page 304
Cytoskeletal and cell junctional mechanisms (Box 11.2)......Page 305
Corticosteroid mechanisms......Page 307
Prostaglandin mechanisms (Box 11.3)......Page 309
Cell volume related mechanisms......Page 310
Other agents......Page 311
References......Page 312
Introduction......Page 321
Photoreceptor QO2 in light......Page 322
Role of glycolysis underlying retinal function: from whole retina to its parts......Page 323
Biochemical specialization of glial cells......Page 324
Functional neuronal activity and division of metabolic labor......Page 326
Cellular compartmentation of energy substrates other than glucose......Page 327
If there are no conventional synapses in drone retina and only the photoreceptors are directly excitable by light, what is the evidence that photoreceptors depend on surrounding glia for their metabolic needs?......Page 328
Glucose is not the principal energy substrate used by photoreceptors, so what is the identity of the energy metabolite maintaining photoreceptor function and respiration?......Page 329
Overall scheme for metabolic compartmentation and metabolic trafficking in honeybee drone retina......Page 330
Experimental models in vertebrates......Page 331
Metabolic interaction between photoreceptors and retinal pigment epithelia......Page 332
Metabolic factors in the regulation of retinal blood flow......Page 333
Metabolic pathway leading to nitric oxide release......Page 334
References......Page 335
Transport from the blood side to the photoreceptor side......Page 338
Transport from the retinal side to the blood side......Page 339
Capacitative compensation of fast changes in the ion composition in the subretinal space......Page 340
Visual cycle......Page 341
Phagocytosis of photoreceptor outer segments......Page 342
Structural integrity of neighboring tissues......Page 343
References......Page 344
Orbit osteology......Page 346
The orbital apex......Page 348
Periorbital fascia......Page 350
Orbital nerves......Page 351
Arterial supply......Page 352
The eyebrow and forehead......Page 353
The midface......Page 354
The eyelid margin......Page 356
Eyelid musculature......Page 357
Eyelid vasculature......Page 358
Eyelid innervation......Page 359
References......Page 360
Structure......Page 363
Function......Page 365
Regulation of goblet cell secretion......Page 366
Regulation of conjunctival electrolyte and water secretion......Page 367
Types of protein secretion......Page 369
α1-Adrenergic agonists......Page 370
Mechanism of acinar electrolyte and water secretion......Page 371
Mechanism of ductal electrolyte and water secretion......Page 372
Structure of meibomian glands and mechanism of lipid production......Page 373
References......Page 374
The ophthalmic nerve and its branches......Page 376
Distribution of sensory nerve fibers within the eye......Page 377
Intraepithelial nerve terminals......Page 378
Development of corneal nerves......Page 380
Sensory fibers of the cornea and conjunctiva......Page 382
Cold thermal receptors......Page 384
“Silent” nociceptors......Page 385
Local inflammation......Page 387
Trophic effects of ocular sensory nerves......Page 388
Sensitivity of the injured cornea......Page 390
Ocular pain......Page 392
Deep ocular pain......Page 394
Prevention of surgical pain......Page 395
References......Page 396
Efflux transporters – brief history......Page 398
P-gp......Page 399
MRP......Page 400
BCRP......Page 402
Clinical correlates from literature......Page 403
Strategies to evade efflux transporters......Page 404
References......Page 405
Dark-adapted rods......Page 407
The dark current and the cGMP-gated channel......Page 409
Ca2+ and the exchanger......Page 410
Rhodopsin......Page 411
G-protein, Gt......Page 412
Importance of lipid milieu......Page 413
Photoisomerization of rhodopsin......Page 414
Rhodopsin phosphorylation, retinoid recycling and regeneration......Page 415
Amplification......Page 417
Turnover of guanine nucleotides......Page 418
Phototransduction and disease......Page 419
What we don’t know......Page 420
References......Page 421
Photocurrent response to flashes......Page 424
Detecting single photons......Page 426
Photocurrent response to steady light......Page 428
Action spectra of rods and cones......Page 430
CNG channel and Na+/K+,Ca2+ exchanger......Page 433
Role of inner segment conductances......Page 435
Voltage-activated calcium current, ICa......Page 436
Calcium-activated anion current, ICl(Ca)......Page 437
Electrotonic coupling......Page 438
References......Page 439
Purposes of light adaptation......Page 442
Scotopic vision: the rod system provides specialization for night vision......Page 443
Saturation of the electrical response in rods and its avoidance in cones......Page 445
Unaltered rising phase but accelerated recovery......Page 446
Dependence of sensitivity on background intensity: Weber’s Law......Page 447
Extremely rapid recovery of human cone photocurrent......Page 448
Photoreceptor light adaptation independent of calcium......Page 449
Powerful negative feedback loop mediated by calcium......Page 450
Shortened R* lifetime......Page 451
Cone avoidance of saturation......Page 452
Dark adaptation of the rods: very slow recovery from bleaching......Page 453
References......Page 455
Kinds of neurons......Page 456
The gliaform cell phenotype......Page 457
True glia and vasculature......Page 458
Photoreceptor ribbon synapses: small-volume multi-target signaling......Page 459
BC ribbon synapses: semi-precise target signaling......Page 460
AC, AxC, and efferent slow transmitter synapses: large volume signaling......Page 461
Fast, focal neurochemistry, synaptic currents, and amplification......Page 462
Modulation by transporters......Page 463
Synaptic chains and polarity......Page 464
The synaptology of mammalian rod pathways – evolution of a new amplification scheme......Page 465
R/G opponency......Page 467
Revising the retinal synaptic networks with disease......Page 468
References......Page 470
Electrical synapses (coupling) between photoreceptors......Page 472
Horizontal cell responses......Page 473
Horizontal cell output synapses......Page 475
Rod and cone pathways and bipolar cell output synapses......Page 477
Bipolar cell responses and center-surround antagonistic receptive field (CSARF) organization......Page 478
References......Page 482
Synaptic mechanisms shape excitatory signals in the IPL......Page 484
Amacrine cells mediate inhibition in the IPL......Page 486
The contributions of the inner and outer retina to ganglion cell receptive field surround organization......Page 488
Ganglion cells encode color information......Page 489
Intrinsically photosensitive ganglion cells......Page 490
References......Page 491
Radial current flow......Page 493
Glial currents......Page 495
Non-invasive recording of the ERG......Page 496
Full-field dark-adapted (Ganzfeld) flash ERG......Page 497
Negative ERGs......Page 498
Mixed rod-cone a-wave......Page 499
Dark-adapted b-wave (PII)......Page 500
Scotopic threshold response (STR)......Page 501
Isolating cone-driven responses......Page 502
Light-adapted a-wave......Page 504
Light-adapted b-wave......Page 505
Light-adapted d-wave......Page 506
Flicker ERG......Page 507
Photopic negative response......Page 508
Pattern ERG......Page 509
Multifocal ERG......Page 510
Closing comments......Page 511
References......Page 512
Regulation of Light through the Pupil......Page 515
The neuronal pathway of the pupil light reflex and near pupil response......Page 516
Afferent arm of the pupil light reflex......Page 517
The interneuron arm of the pupil light reflex......Page 519
The efferent arm of the pupil light reflex......Page 520
Pupil reflex dilation: central and peripheral nervous system integration......Page 521
Iris sphincter, iris dilator, and iris color......Page 522
Properties of light and their effect on pupil movement......Page 523
Clinical observation of the pupil light reflex......Page 524
Anisocoria......Page 527
Pupil inequality that increases in the dark......Page 528
Pharmacologic diagnosis of Horner syndrome with cocaine or apraclonidine......Page 531
Congenital and childhood Horner syndrome......Page 532
Cholinergic supersensitivity......Page 533
Adie’s tonic pupil: postganglionic parasympathetic denervation......Page 534
Pupil involvement in third nerve palsy......Page 535
When the pupil fails to dilate......Page 536
References......Page 537
Historical roots......Page 539
Discovery of melanopsin and ganglion-cell photoreceptors......Page 540
Spectral tuning......Page 541
Depolarizing photoresponse with action potentials......Page 542
Morphology, retinal distribution and receptive field......Page 544
Resistance to pathological states......Page 545
Bipolar cell input......Page 546
Amacrine cell input......Page 548
Intraretinal output......Page 549
Central projections......Page 550
Circadian photoentrainment and photic modulation of the pineal......Page 551
Acute regulation of activity and sleep......Page 553
References......Page 554
Targets of the retinal projections......Page 558
Visual field lesions......Page 560
References......Page 562
Intraorbital optic nerve......Page 563
The optic canal......Page 564
The optic tract and lateral geniculate nucleus......Page 565
Astrocytes......Page 566
Microglia......Page 567
Optic nerve head......Page 568
Generation of optic nerve oligodendrocytes and myelination......Page 569
Axon guidance......Page 570
Retinal ganglion cell electrophysiology and synaptic transmission......Page 571
Role of astrocytes......Page 572
Ischemic optic neuropathy......Page 573
Glaucoma......Page 574
Retinal ganglion cell death after optic nerve injury......Page 575
Signaling of axonal injury......Page 576
Glial inhibition of neurite extension......Page 577
Neuroprotection and retinal ganglion cell survival......Page 578
“Neuroenhancement” of retinal ganglion cell function......Page 579
References......Page 580
Layers and maps......Page 587
Cell classes......Page 588
Inputs: extraretinal sources and cortical feedback......Page 589
Outputs: projections to V1 and beyond......Page 590
Feedback and feedforward pathways......Page 591
Circuit neurochemistry......Page 592
Receptive field properties and parallel processing......Page 593
The impact of feedback......Page 594
The LGN and motor planning......Page 596
Conclusions......Page 597
References......Page 598
Overview of cortical organization: a general road map......Page 599
LGN inputs......Page 601
Cell classes and connections within V1......Page 602
Output pathways from V1......Page 603
Receptive field properties: How is V1 different from the LGN?......Page 604
Columns and modules: Outlining the functional architecture of V1......Page 606
How do parallel inputs relate to parallel outputs?......Page 607
The importance of time......Page 608
The importance of context......Page 609
References......Page 610
Retinotopic mapping......Page 612
Functional specificity......Page 614
Comparing visual areas in monkeys and humans......Page 615
V2......Page 616
MT/V5 and related areas......Page 618
V3......Page 619
V4......Page 620
PIT/TEO......Page 621
References......Page 622
Foveal window of visibility......Page 626
What is the relationship between the contrast sensitivity function and the response of single cortical cells?......Page 627
Do these two parallel systems carry the same or different contrast sensitivity information?......Page 628
The effect of disease on contrast sensitivity......Page 629
Peripheral window of visibility......Page 631
Luminance......Page 632
Chromatic sensitivity......Page 634
Suprathreshold sensitivity......Page 636
Conclusion......Page 637
References......Page 638
Minimum resolvable acuity......Page 640
Minimum discriminable acuity......Page 642
Optical quality of the eye......Page 643
Refractive error and defocus results in a marked loss of image quality......Page 645
Cone to ganglion cell convergence......Page 646
Eccentricity......Page 647
Crowding in peripheral vision......Page 649
Motion......Page 650
Visual acuity and reading......Page 651
The contrast sensitivity function represents our window of visibility......Page 652
The CSF in peripheral vision......Page 653
Visual acuity chart design considerations......Page 655
Development of visual acuity and CSF......Page 656
Visual acuity through the lifespan......Page 657
Crowding and amblyopia......Page 658
References......Page 659
Molecular genetics of color vision and color deficiencies......Page 661
Blue-yellow circuitry......Page 663
Red-green circuitry......Page 665
Future directions......Page 666
References......Page 667
The psychophysical basis for perimetry......Page 668
Types of perimetric testing......Page 669
Static perimetry......Page 670
Suprathreshold static perimetry......Page 671
Detection of perimetric sensitivity loss and interpretation of results......Page 672
Patterns of visual field loss associated with different pathologic conditions......Page 675
Determination of visual field progression......Page 677
A guide for interpretation of visual field information......Page 678
Frequency doubling technology (FDT) perimetry......Page 680
Motion perimetry......Page 682
Rarebit perimetry......Page 683
Multifocal visual evoked potentials (mfVEP)......Page 684
Conclusions......Page 686
References......Page 687
Visual direction......Page 690
Normal retinal correspondence......Page 692
Abnormal retinal correspondence......Page 694
Binocular (retinal) disparity......Page 696
Stereopsis......Page 698
Quantitative and qualitative stereopsis......Page 699
Stereoacuity......Page 700
Spatial distortions from aniseikonia......Page 703
Motion-in-depth......Page 706
Suppression in normal binocular vision......Page 707
References......Page 708
Temporal summation and the critical duration......Page 711
Critical flicker fusion frequency......Page 712
Effect of stimulus luminance on CFF......Page 713
Effect of stimulus size on CFF: the Granit–Harper law......Page 714
Temporal contrast sensitivity......Page 715
Chromatic temporal sensitivity......Page 716
Mechanisms underlying temporal sensitivity......Page 717
Differences between mean-modulated and luminance-pedestal flicker......Page 718
Temporal phase segmentation......Page 719
Clinical applications of temporal sensitivity measurements......Page 720
The neural encoding of motion......Page 721
Clinical applications of motion processing......Page 722
References......Page 723
Ocular following movements......Page 726
Hierarchy of visual processing......Page 727
Spatio-temporal vision......Page 728
Grating acuity......Page 729
Vernier acuity......Page 730
Motion direction asymmetries......Page 731
Fusion......Page 732
Development of disparity sensitivity......Page 733
References......Page 735
Retinogeniculate projections are refined during development......Page 738
What parameters of activity drive refinement?......Page 739
Synaptic inputs change strength with segregation......Page 741
Molecular mechanisms guiding the formation of eye-specific axonal territories......Page 742
References......Page 743
Perceptual deficits......Page 745
Neural changes......Page 746
Brief unrestricted vision during monocular deprivation......Page 747
Critical period for monocular form deprivation......Page 748
Molecular mechanisms of ocular dominance plasticity......Page 749
Neural changes......Page 752
Alternating defocus......Page 753
Effects of onset age and duration of strabismus......Page 755
Duration......Page 757
Amblyopia......Page 758
Neural changes......Page 759
References......Page 760
Cross-modal processing in visually normal development......Page 763
Cross-modal processing in visually normal adults......Page 764
Tactile performance......Page 765
Braille tactile processing......Page 768
Auditory processing......Page 769
Auditory localization......Page 771
Cross-modal connectivity within occipital cortex of early blind individuals......Page 772
Blindfolding studies......Page 774
Restoration of vision......Page 775
Concluding remarks......Page 777
References......Page 778
A......Page 780
B......Page 782
C......Page 783
D......Page 786
E......Page 787
F......Page 789
G......Page 790
I......Page 791
L......Page 793
M......Page 794
N......Page 796
O......Page 797
P......Page 798
R......Page 801
S......Page 803
T......Page 805
U......Page 806
V......Page 807
Z......Page 808