دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: M. Manjaiah, K. Raghavendra, N. Balashanmugam, J. Paulo Davim سری: Woodhead Publishing Reviews: Mechanical Engineering Series ISBN (شابک) : 0128220562, 9780128220566 ناشر: Woodhead Publishing سال نشر: 2021 تعداد صفحات: 323 [325] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Additive Manufacturing: A Tool for Industrial Revolution 4.0 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساخت افزودنی: ابزاری برای انقلاب صنعتی 4.0 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تولید افزودنی: ابزاری برای انقلاب صنعتی 4.0 آخرین پیشرفتها، مکانیسمهای اساسی، چالشها و فرصتهای چاپ سه بعدی را در محیط تولید دیجیتال بررسی میکند. از یک پانل بین المللی از کارشناسان استفاده می کند تا توضیح دهد که چگونه فرآیندهای تولید افزودنی با موفقیت با فناوری های صنعت 4.0 برای افزایش قابلیت های فنی، کارایی، انعطاف پذیری و پایداری ادغام شده اند. چرخه کامل محصول تولید شامل طراحی، مواد، خواص مکانیکی و اندازهگیری میشود. جهتهای آتی برای این تقاطع مهم فناوری نیز بررسی میشود. این کتاب محققان و متخصصان صنعتی را در مهندسی صنایع، ساخت دیجیتال، ساخت پیشرفته، برنامه های کاربردی علوم داده و مهندسی کامپیوتر مورد توجه قرار خواهد داد.
Additive Manufacturing: A Tool for Industrial Revolution 4.0 explores the latest developments, underlying mechanisms, challenges and opportunities for 3D printing in a digital manufacturing environment. It uses an international panel of experts to explain how additive manufacturing processes have been successfully integrated with industry 4.0 technologies for increased technical capabilities, efficiency, flexibility and sustainability. The full manufacturing product cycle is addressed, including design, materials, mechanical properties, and measurement. Future directions for this important technological intersection are also explored. This book will interest researchers and industrial professionals in industrial engineering, digital manufacturing, advanced manufacturing, data science applications, and computer engineering.
Front Cover Additive Manufacturing: A Tool for Industrial Revolution 4.0 Copyright Page Contents List of contributors Preface 1 Additive manufacturing: a thrive for industries 1.1 Introduction 1.2 Additive manufacturing technology 1.2.1 Polymerization technique: stereolithography 1.2.1.1 Reprocessability in stereolithography 1.2.2 Sintering technique 1.2.2.1 Reprocessability in sintering: in selective laser melting 1.2.3 Material jetting techniques and fused deposition modeling 1.3 Additive manufacturing and supply chain 4.0 1.3.1 Hypothetical case study on 3D-printed pharmaceutical pills 1.4 Additive manufacturing: a postpandemic or endemic view 1.5 Conclusion References 2 Basic principles of additive manufacturing: different additive manufacturing technologies 2.1 Introduction 2.2 Types of additive manufacturing techniques 2.2.1 Direct additive manufacturing techniques 2.2.1.1 Stereolithography 2.2.1.2 Fused deposition modeling 2.2.1.3 Polyjet technology 2.2.1.4 Laminated object manufacturing 2.2.1.5 Selective laser melting 2.2.1.6 Electron beam melting 2.2.1.7 Laser-engineered net shaping 2.2.1.8 Three-dimensional printing 2.2.1.9 ProMetal (binder jetting) 2.2.2 Indirect additive manufacturing techniques 2.2.2.1 Casting patterns with additive manufacturing 2.2.2.2 Direct additive manufacturing of molds 2.3 Application of additive manufacturing technologies 2.3.1 Comparison between additive manufacturing process and traditional manufacturing process 2.4 Future research directions in additive manufacturing technology References 3 Developments in additive manufacturing 3.1 Introduction to the additive manufacturing process 3.1.1 The evolution of 3D printing 3.1.2 Design for additive manufacturing 3.2 User benefits of additive manufacturing 3.2.1 Cost competitiveness 3.2.2 Technologies development 3.3 Additive manufacturing timeline 3.4 Forecast of 3D printing growth in Industrial Revolution 4.0 3.4.1 Industrialization of 3DP technology 3.4.2 Manufacturing business technology 3.4.3 File formats 3.4.3.1 STL 3.4.3.2 OBJ 3.5 Material developments in additive manufacturing 3.6 Metal 3D Printers 3.7 International scenario 3.8 Summary References 4 Review on 3D printing of medical parts 4.1 Introduction of medical 3D printing 4.2 Reverse engineering of medical parts 4.3 Applications of 3D printing in the medical field 4.4 3D printing processes 4.4.1 Stereolithography 4.4.2 Selective laser sintering/selective laser melting 4.4.3 Fused deposition modeling 4.4.4 Inkjet-based bioprinting 4.5 Healthcare applications of 3D printing materials 4.5.1 Metals and its alloys 4.5.2 Bioceramics and bioactive glasses 4.5.3 Polymers 4.5.4 Bioinks 4.6 Regulatory challenges in 3D printing 4.6.1 Design controls 4.6.2 Build process 4.6.3 Postproduction 4.6.4 Clinical data 4.7 Summary References 5 Software interface issues in consideration of additive manufacturing machines and processes 5.1 Introduction 5.2 Terms used in stereolithography file 5.3 Stereolithography file configuration 5.4 How layers are computed? 5.5 Support structures 5.6 Problems issues associated with the stereolithography files 5.7 Stereolithography file manipulation 5.8 Benefits of stereolithography file generation using the additive manufacturing machines 5.9 The additive manufacturing file format References 6 Role of additive manufacturing in the era of Industry 4.0 6.1 Introduction 6.2 The basic working principle of additive manufacturing 6.3 Classes of additive manufacturing 6.3.1 Vat photo polymerization 6.3.2 Binder jetting process 6.3.3 Material jetting 6.3.4 Powder bed fusion 6.3.5 Material extrusion 6.3.6 Sheet lamination 6.3.7 Directed energy deposition 6.4 Areas of application of additive manufacturing 6.4.1 Medical 6.4.2 Automobile industry 6.4.3 Aerospace industry 6.4.4 Architecture 6.5 Additive manufacturing as a tool for Industry 4.0 6.6 Summary References 7 Perspectives on additive manufacturing in Industry 4.0 7.1 Introduction 7.2 Manufacturing systems 7.3 Additive manufacturing and Industry 4.0 7.4 Adaption of additive manufacturing in industry: challenges and the way ahead 7.4.1 Throughput 7.4.2 Accuracy 7.4.3 Surface roughness 7.4.4 Quality 7.4.5 Efficiency 7.5 Adaption of Industry 4.0 in industry 7.6 Digital thread and additive manufacturing 7.7 Traditional versus direct digital manufacturing 7.8 Internet of Things and additive manufacturing 7.9 Big data and additive manufacturing 7.10 Edge computing 7.11 Fog computing 7.12 Cloud computing 7.13 Automation and additive manufacturing 7.14 Robots in additive manufacturing 7.15 Digital twin in Industry 4.0 7.16 Artificial intelligence in additive manufacturing 7.17 Digitally augmented part 7.18 Sustainability with additive manufacturing in Industry 4.0 7.19 Manufacturing scenario with additive manufacturing in Industry 4.0 7.20 Quality, qualification, and certification of additive manufacturing products with Industry 4.0 7.21 Transformation to IIoT based additive manufacturing 7.22 Manufacturing scenario with additive manufacturing and Industry 4.0 7.23 Future factory with Industry 4.0 and additive manufacturing 7.23.1 Sequence of operations in a smart factory equipped with additive manufacturing and Industry 4.0 technologies 7.24 Conclusion References 8 Additive manufacturing of titanium alloys: microstructure and texture evolution, defect formation and mechanical response 8.1 Additive manufacturing of titanium alloys 8.2 Microstructure evolution in additive manufacturing 8.2.1 Grain morphology 8.2.2 Phase formation 8.2.3 Spheroidization of α phase 8.3 Crystallographic texture evolution in additive manufacturing 8.3.1 Macrotexture formation 8.3.2 Variant selection 8.3.3 Microtexture formation and macrozone elimination 8.3.4 Grain morphology and texture transition at the interface 8.4 Defect formation in additive manufacturing 8.4.1 Residual stresses 8.4.2 Porosity formation 8.5 Mechanical properties of additively manufactured parts 8.5.1 Effect of microstructure 8.5.2 Effect of texture 8.5.3 Effect of defects 8.6 Summary References 9 Wire arc additive manufacturing: approaches and future prospects 9.1 Introduction 9.2 Process history 9.3 Process essentials 9.4 Variants of arc-based additive manufacturing process 9.5 Materials 9.6 Modeling and simulation 9.7 Postprocessing/heat treatment 9.8 Benefits and future challenges 9.9 Conclusion References 10 Materials for additive manufacturing and 4D printing 10.1 Materials for additive manufacturing 10.2 Types of materials used for plastic/polymer printing 10.3 Types of materials used for metal 3D printing 10.4 Materials for bioapplications 10.5 Engineering properties of materials 10.6 Issues and challenges of materials in additive manufacturing 10.7 What is 4D printing? 10.8 Material selection for 4D printing 10.8.1 Thermoresponsive materials 10.8.2 Moisture responsive materials 10.8.3 Photo/electro/magnetoresponsive materials 10.9 Advantages and applications of 4D printing 10.9.1 Advantages 10.9.1.1 Size changing 10.9.1.2 New materials equal to new properties 10.9.2 Potential applications of 4D printing 10.9.2.1 Self-repair piping system 10.9.2.2 Self-assembly furniture 10.9.2.3 Medical industry 10.9.2.4 Fashion References Further reading 11 Polymeric materials for three-dimensional printing 11.1 Biopolymers for three-dimensional printing 11.1.1 Alginate-based three-dimensional printed materials 11.1.2 Chitosan-based three-dimensional printed materials 11.1.3 Starch and starch blends 11.1.4 Three-dimensional printing cellulose and its derivatives 11.1.5 Proteins for three-dimensional printing 11.2 Synthetic polymers for three-dimensional printing 11.2.1 Polyolefins for three-dimensional printing 11.2.2 Elastomers 11.2.3 Fluoropolymers 11.2.4 Three-dimensional printing using poly(lactic acid) 11.3 Conclusions Acknowledgments References 12 In situ monitoring of metal additive manufacturing process: a review 12.1 Introduction 12.2 Common defects in metal AM and recommended monitoring method 12.3 Powder bed fusion processes 12.3.1 Levels in powder bed fusion process 12.3.1.1 Melt pool and track 12.3.1.2 Slice and entire build 12.3.1.3 Powder bed 12.3.2 Coaxial sensing for melt pool monitoring of selective laser melting 12.3.2.1 Vision and thermal based (visible and infrared range) 12.3.2.2 Inline coherent imaging technique 12.3.3 Off-axial camera setup for monitoring of the entire layer in the PBF process 12.3.3.1 Vision and thermal based (cameras and pyrometers) After powder deposition before fusion of a new layer During the scanning of each slice After the scan 12.3.3.2 3D vision (fringe projection) technique 12.4 Direct metal deposition 12.4.1 Powder feed 12.4.2 Wire feed 12.5 Sensors predominantly used for in situ monitoring of AM process 12.5.1 Optical tomography 12.5.2 Internal inspection through X-ray imaging and CT Scan 12.5.3 Other nondestructive sensors 12.6 Quality challenges in additive manufacturing 12.7 Conclusion References Index Back Cover