دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Hang Z. Yu سری: Additive Manufacturing Materials and Technologies ISBN (شابک) : 0128243740, 9780128243749 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 342 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب Additive Friction Stir Deposition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رسوب اصطکاکی اغتشاشی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Additive Friction Stir Deposition خلاصه ای جامع از درک پیشرفته در مورد این فناوری نوظهور ساخت مواد افزودنی حالت جامد است. بخشها رسوب اصطکاکی اغتشاشی را پوشش میدهند که شامل پیشرفتهایی در علم پردازش، علم متالورژی و کاربردهای نوآورانه میشود. این کتاب توصیف روشنی از پدیدههای فیزیکی زیربنایی ارائه میکند، نشان میدهد که چگونه فرآیند کیفیت چاپ را تعیین میکند، ساختار و ویژگیهای حاصل را در حالت چاپ پوشش میدهد، قابلیتها و محدودیتهای کلیدی آن را برجسته میکند، و کاربردهای خاص در تعمیر، روکشکاری و چندکاره را بررسی میکند. پرینت سه بعدی مواد
این کتاب به عنوان یک راهنمای آموزشی و تحقیقاتی ارائه میکند، هدف این کتاب ارائه تصویری جامع از تولید افزودنیهای حالت جامد مبتنی بر رسوب اصطکاکی اغتشاشی و همچنین مقایسهای کامل با روشهای معمولی است. تولید افزودنی های فلزی مبتنی بر پرتو، مانند همجوشی بستر پودری و رسوب مستقیم انرژی.
Additive Friction Stir Deposition is a comprehensive summary of the state-of-the-art understanding on this emerging solid-state additive manufacturing technology. Sections cover additive friction stir deposition, encompassing advances in processing science, metallurgical science and innovative applications. The book presents a clear description of underlying physical phenomena, shows how the process determines the printing quality, covers resultant microstructure and properties in the as-printed state, highlights its key capabilities and limitations, and explores niche applications in repair, cladding and multi-material 3D printing.
Serving as an educational and research guide, this book aims to provide a holistic picture of additive friction stir deposition-based solid-state additive manufacturing as well as a thorough comparison to conventional beam-based metal additive manufacturing, such as powder bed fusion and directed energy deposition.
Additive Friction Stir Deposition Copyright Preface Contents Book endorsement: Additive Friction Stir Deposition 1 Introduction 1.1 Additive manufacturing for metals 1.2 Solid-state metal additive manufacturing 1.3 Additive friction stir deposition 1.4 Organization of this book References 2 Process fundamentals 2.1 Elements of friction theory 2.2 Fundamentals of heat and mass transfer 2.2.1 Heat transfer 2.2.2 Mass transfer 2.3 Basic principle of additive friction stir deposition 2.4 Establishment of an integrated in situ monitoring system: real-time measurement of temperature, force, torque, and mate... 2.5 Temperature evolution in the deposited material and substrate 2.5.1 Thermal history of the deposited materials 2.5.2 Dependence of thermal features on the processing conditions in additive friction stir deposition 2.5.3 Power law relationships of peak temperature and processing parameters 2.5.4 Temperature evolution of the substrate 2.6 Force and torque evolution 2.6.1 Multiple phases of force and torque evolution 2.6.2 Dependence of steady-state force and torque on processing conditions 2.7 In situ visualization of material rotation and flow 2.7.1 Footprint and material rotation 2.7.2 Contact state and sticking coefficient 2.8 Correlation of the material flow behavior to temperature, force, and torque evolution 2.8.1 Influences of the contact state and material flow on heat generation 2.8.2 Influences of the contact state and material flow on force and torque 2.8.3 Factors governing the contact state and material flow behavior 2.9 Summary References 3 Material flow phenomena 3.1 Plasticity and finite deformation theory 3.2 Elements of fluid mechanics 3.3 Previous experimental studies on material flow in friction stir welding 3.4 Design of tracer experiments for material flow investigation in additive friction stir deposition 3.5 Flow path of the center volume of the feed material 3.5.1 Center tracer flow during initial material feeding 3.5.2 Center tracer flow during steady-state deposition 3.6 Flow path of the edge volume of the feed material 3.6.1 Edge tracer flow during initial material feeding 3.6.2 Edge tracer flow during steady-state deposition 3.7 Material deformation and flow at the interface 3.7.1 Surface and interface morphology 3.7.2 Interfacial mixing 3.8 Summary References 4 Dynamic microstructure evolution 4.1 Elements of microstructure evolution 4.2 Dynamic recrystallization mechanisms 4.2.1 Discontinuous dynamic recrystallization 4.2.2 Continuous dynamic recrystallization 4.3 Thermomechanical history in additive friction stir deposition 4.3.1 Stage A 4.3.2 Stage B 4.3.3 Stage C 4.4 Characteristics of the resulting microstructures by additive friction stir deposition 4.4.1 High stacking fault energy materials: Al and Mg 4.4.2 Low (to medium) stacking fault energy materials: Inconel 625 and 316L stainless steel 4.5 Dynamic microstructure evolution along the flow path of an Al–Cu alloy 4.5.1 Microstructure characterization along the flow path of the center tracer 4.5.2 Microstructure characterization along the flow path of the edge tracer 4.5.3 Quantification of the overall trend 4.6 Processing-microstructure linkages of Al-Mg-Si and Cu 4.6.1 Microstructure characterization of Al–Mg–Si printed at various conditions 4.6.2 Microstructure characterization of Cu printed at various conditions 4.6.3 Analysis of the microstructure evolution mechanisms and trends 4.6.3.1 Origin of the different microstructure evolution mechanisms 4.6.3.2 Origin of the process-microstructure linkage in Al–Mg–Si 4.6.3.3 Origin of the process-microstructure linkage in Cu 4.6.3.4 Origin of the texture differences 4.7 Dynamic phase evolution 4.8 Summary References 5 Effects of tool geometry 5.1 A survey of tool effects in friction stir welding 5.2 Tool types and geometries for additive friction stir deposition 5.3 Effects of tool geometry on interface morphology 5.4 Effects of tool geometry on microstructure 5.5 Summary References 6 Beyond metals and alloys: additive friction stir deposition of metal matrix composites 6.1 Introduction to metal matrix composites 6.2 Current processing approaches to metal matrix composites 6.2.1 Bulk processing 6.2.1.1 Liquid-state processing: stir casting 6.2.1.2 Liquid-state processing: squeeze casting 6.2.1.3 Solid-state processing: powder metallurgy 6.2.2 Additive production 6.2.2.1 Powder bed fusion 6.2.2.2 Directed energy deposition 6.2.2.3 Sheet lamination 6.3 Additive friction stir deposition of metal matrix composites 6.3.1 Feeding strategy and printing principle 6.3.2 Potential benefits 6.4 Examples 6.4.1 Cu-ZrO2 printed using a composite feed-rod 6.4.2 Al–ZrO2, Al–SiC, and Cu–SiC composites printed by packing particles in the hollow feed-rod 6.4.3 Al–SiC printed by auger feeding 6.5 Limitations of this printing approach 6.5.1 Maximum volume fraction of reinforcement 6.5.2 Tool wear 6.6 Summary References 7 Mechanical properties of the printed materials 7.1 Elements of the mechanical behavior of materials 7.2 Tensile properties of the printed metals and alloys 7.2.1 Effects of precipitation strengthening 7.2.2 Effects of postprocess aging 7.2.3 Effects of dislocation content 7.2.4 Effects of grain size 7.2.5 Two-phase alloys 7.2.6 Gradient of the mechanical properties 7.3 Fracture behavior 7.4 Fatigue behavior 7.5 Mechanical properties of bilayer structures 7.6 Mechanical properties of printed metal matrix composites 7.7 Summary References 8 Niche applications 8.1 Structural repair 8.1.1 Through-hole filling 8.1.2 Groove filling 8.1.3 Surface and divot repair 8.1.4 Fastener hole repair 8.2 Selective-area cladding on thin automotive sheet metals 8.2.1 Cladding quality 8.2.2 Thin substrate distortion 8.3 Recycling 8.3.1 Solid-state metal recycling background 8.3.2 Friction stirring for solid-state recycling 8.4 Large-scale additive manufacturing 8.5 Printing and repair under harsh conditions 8.6 Summary References 9 Future perspectives 9.1 In-depth understanding of the underlying physics 9.2 Material innovation 9.3 Incorporation of artificial intelligence 9.4 Summary References Index