دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Lei Wang, Man-Chung Wong, Chi-Seng Lam سری: ISBN (شابک) : 9789811088278 ناشر: Springer Singapore سال نشر: 2019 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Adaptive Hybrid Active Power Filters به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیلترهای اکتیو هیبریدی تطبیقی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب فیلترهای توان فعال هیبریدی شنت مبتنی بر تریستور پیشرفته (HAPFs) را برای بهبود کیفیت توان در شبکههای برق معرفی میکند، که با ولتاژ عملیاتی پیوند dc پایین و محدوده جبران گسترده مشخص میشوند. این به این معنی است که آنها می توانند بر نیاز ولتاژ بالای dc-link فیلترهای توان اکتیو معمولی و مشکل محدوده جبران محدود فیلترهای برق اکتیو هیبریدی LC-coupling غلبه کنند. این کتاب که از 10 فصل تشکیل شده است، اصول، طراحی، کنترل و اجرای سخت افزاری فیلترهای قدرت اکتیو هیبریدی مبتنی بر تریستور را مورد بحث قرار می دهد. این شامل 1) ویژگی های V-I، تجزیه و تحلیل هزینه، کاهش توان و مطالعات قابلیت اطمینان فیلترهای مختلف قدرت. 2) کاهش تکنیک تزریق هارمونیک برای قطعات کنترل شده با تریستور. 3) کنترل مدولاسیون عرض پالس غیرخطی (PWM). 4) روش های طراحی پارامتر؛ 5) طراحی حداقل ظرفیت اینورتر؛ 6) کنترل ولتاژ dc-link تطبیقی؛ 7) استراتژی کنترل نامتعادل. 8) تکنیک های جبران انتخابی؛ و 9) طراحی نمونه اولیه سخت افزار HAPF های مبتنی بر تریستور، که توسط شبیه سازی و نتایج تجربی تأیید شده است. این خوانندگان را قادر میسازد تا درکی از تکنیکهای پایه الکترونیک قدرت اعمال شده در سیستمهای قدرت و همچنین تکنیکهای پیشرفته برای کنترل، پیادهسازی و طراحی HAPFهای پیشرفته مبتنی بر تریستور به دست آورند.
This book introduces advanced thyristor-based shunt hybrid active power filters (HAPFs) for power quality improvement in power grids, which are characterized by a low dc-link operating voltage and a wide compensation range. This means they can overcome the high dc-link voltage requirement of conventional active power filters and the narrow compensation range problem of LC-coupling hybrid active power filters. Consisting of 10 chapters, the book discusses the principle, design, control and hardware implementation of thyristor-based hybrid active power filters. It covers 1) V-I characteristics, cost analysis, power loss and reliability studies of different power filters; 2) mitigation of the harmonic injection technique for thyristor-controlled parts; 3) nonlinear pulse width modulation (PWM) control; 4) parameter design methods; 5) minimum inverter capacity design; 6) adaptive dc-link voltage control; 7) unbalanced control strategy; 8) selective compensation techniques; and 9) the hardware prototype design of thyristor-based HAPFs, verified by simulation and experimental results. It enables readers to gain an understanding of the basic power electronics techniques applied in power systems as well as the advanced techniques for controlling, implementing and designing advanced thyristor-based HAPFs.
Preface Acknowledgements Contents Abbreviations 1 Introduction Abstract 1.1 Power Quality Issues and Its Market 1.1.1 Low Power Factor 1.1.2 Current Harmonic Pollution 1.1.3 Current Unbalanced Problem 1.1.4 Power Quality Compensation Market 1.2 Development of Power Quality Compensators 1.3 Inductive-, Capacitive-and Adaptive-Coupling Power Quality Compensators and Their Control Issues 1.3.1 The Reference Signals Determination Methods 1.3.2 Pulse Width Modulations 1.4 TCLC-HAPF and Its Potential Advantages 1.5 Research Challenges and Goals 1.6 Book Organization 1.7 Appendix: Voltage and Current Standards References 2 Comparisons Among Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) and Other Different Power Quality Filters Abstract 2.1 Introduction 2.2 Structures of APF, HAPF and TCLC-HAPF 2.3 V-I Characteristics of APF, HAPF and TCLC-HAPF 2.3.1 V-I Characteristics of APF, HAPF and TCLC-HAPF 2.3.2 Simulation Case Studies 2.4 Cost Comparison Among APF, HAPF and TCLC-HAPF 2.4.1 Cost Comparison Among APF, HAPF and TCLC-HAPF Under Low Voltage Levels 2.4.2 Cost Comparisons Among APF, HAPF and TCLC-HAPF Under High Voltage Levels 2.5 Reliability Comparison Among APF, HAPF and TCLC-HAPF 2.6 Power Loss Comparison Among APF, HAPF and TCLC-HAPF 2.7 Tracking Performance Comparison Among APF, HAPF and TCLC-HAPF 2.8 Experimental Results 2.8.1 Experimental Results of APF 2.8.2 Experimental Results of HAPF 2.8.3 Experimental Results of TCLC-HAPF 2.9 Summary 2.10 Appendix: Calculation of Failure Rate for Different Components References 3 Mitigation of the Harmonic Injection in TCLC Part and Nonlinear Hysteresis PWM Control in Active Inverter Part of Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) Abstract 3.1 Introduction 3.2 Circuit Configuration and Modeling of TCLC Part and TCLC-HAPF 3.3 Mitigation of the Harmonic Injection in TCLC Part 3.3.1 Mitigation of the Harmonic Injection in TCLC Part 3.3.2 The Selection of n1 and n2 Through the Design of Lc 3.3.3 Simulation and Experimental Verifications of the Mitigation of the Harmonic Injection in TCLC Part 3.4 Nonlinear Hysteresis PWM Control in Active Inverter Part of TCLC-HAPF 3.4.1 Compensating Current Characteristics of TCLC-HAPF 3.4.2 Non-linear Adaptive Hysteresis Band PWM Controller for TCLC-HAPF 3.4.2.1 Relationship Between Hysteresis Band H and ATHD 3.4.2.2 Control Block Diagram of Proposed Non-linear Adaptive Hysteresis Band Controller for TCLC-HAPF 3.4.2.3 Simulation Verifications of the Non-linear Adaptive Hysteresis Band PWM in Active Inverter Part of TCLC-HAPF 3.5 Summary References 4 Modeling and Parameter Design Method of Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) for Balanced/Unbalanced Loading Compensation Abstract 4.1 Introduction 4.2 Circuit Configuration and Modeling of TCLC-HAPF 4.3 Proposed TCLC-HAPF Parameter Design Method Design for Balanced Loads 4.4 Proposed TCLC-HAPF Parameter Design Method Design for Unbalanced Loads 4.4.1 Design of VDCf, CPF and LPF Based on Power Flow Analysis Under Fundamental Frequency Consideration 4.4.2 Design of VDCh Based on Harmonic Frequency Analysis 4.4.3 Design of Lc for Current Ripple Filtering 4.4.4 Summary of TCLC-HAPF Parameter Design 4.5 Simulation Case Studies 4.6 Experimental Results 4.7 Summary References 5 Proposed Unbalanced Control Strategy for Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) Abstract 5.1 Introduction 5.2 Circuit Configuration of Three-Phase Three-Wire TCLC-HAPF 5.3 Proposed Unbalanced Control Strategy for TCLC-HAPF 5.3.1 TCLC Part Control Strategy 5.3.1.1 Calculation of Vnf 5.3.1.2 Obtain the Impedance of Xaf, Xbf and Xcf 5.3.1.3 Find the Final Firing Angles αx Referenced to the Phase Angle of Vx 5.3.2 The Active Inverter Part Control Strategy 5.3.2.1 Instantaneous Power Compensation Control 5.3.2.2 The DC-Link Voltage Control 5.3.2.3 Current PWM Control 5.3.3 The Proposed Hybrid Controller for TCLC-HAPF 5.4 Simulation and Experimental Results 5.5 Summary 5.6 Appendix: Balancing Three-phase Fundamental Active Power by Reactive power compensation References 6 Minimizing Inverter Capacity Design and Comparative Performance Evaluation of Static Var Compensator Coupling Hybrid Active Power Filters (SVC-HAPFs) Abstract 6.1 Introduction 6.2 Circuit Configuration and Modeling of SVC-HAPFs 6.3 Ratio of Phase Active Inverter Rating and SVC Part Rating and Required Minimum DC-Link Voltage 6.3.1 The Parameter Design and Characteristics of FC-TCR and TCLC 6.3.2 Fundamental Frequency Analysis of Rtot1 and VDC_tot1 6.3.3 Harmonic Frequency Analysis of Rtotn and VDC_totn 6.3.3.1 The Rtotn and VDC_totn for Compensating iixn Only 6.3.3.2 The Rn and VDCn for Compensating Both iixn and iLxn 6.3.4 The Minimizing Inverter Capacity Design of Total Rtot and VDC_Tot 6.3.5 Comparison of SVC-HAPFs 6.4 Simulation Results 6.5 Experimental Results 6.6 Summary References 7 Adaptive DC-Link Voltage Control of Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) Abstract 7.1 Introduction 7.2 Circuit Configuration of Three-Phase Three-Wire TCLC-HAPF 7.3 Proposed Simplified Minimum DC-Link Voltage Calculation Method 7.3.1 Deduction of DC-Link Voltage (VDCxf) at Fundamental Frequency 7.3.2 Deduction of DC-Link Voltage (VDCxh) at Harmonic Frequency 7.3.3 Comparison Between Conventional and Proposed Minimum VDC Calculation Methods 7.4 Control Block of the Proposed Adaptive DC-Link Voltage Controlled TCLC-HAPF 7.4.1 TCLC Control Block 7.4.2 Active VSI Control Block 7.4.3 Adaptive DC-Link Voltage Control Block 7.4.3.1 Reference DC-Link Voltage Calculation Block 7.4.3.2 DC-Link Voltage Feedback Control Block 7.5 Simulation Case Studies 7.5.1 Under Compensation by Adaptive VDC Controlled TCLC-HAPF 7.5.2 Over Compensation by Adaptive VDC Controlled TCLC-HAPF 7.6 Experimental Results 7.6.1 Dynamic Performance of Adaptive VDC Controlled TCLC-HAPF to Load Variation 7.6.2 Comparison with Fixed VDC Controlled TCLC-HAPF 7.7 Summary References 8 Selective Compensation of Distortion, Unbalanced and Reactive Power of a Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) Abstract 8.1 Introduction 8.2 Circuit Configuration of the TCLC-HAPF 8.3 Power Analysis of the Proposed Selective Compensation 8.4 Proposed Selective Compensation Control Strategy of TCLC-HAPF 8.4.1 Active Inverter Part Control 8.4.2 TCLC Part Control 8.4.3 Compensation Priority Selection Among kQ, kU and kH 8.4.4 Control Block of TCLC-HAPF 8.5 Simulation and Experimental Verifications 8.5.1 PSCAD Simulations 8.5.2 Experimental Results 8.6 Summary References 9 Implementation of a 110 V-5 kVA Three-Phase Three-Wire of Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) Experimental Prototype Abstract 9.1 Introduction 9.2 Circuit Configuration of the TCLC-HAPF Experimental Prototype 9.3 Hardware Design of TCLC-HAPF Experimental Prototype 9.3.1 Power Semiconductor Switching Devices and Their Drivers 9.3.1.1 Thyristor and Its Drivers in TCLC Part 9.3.1.2 IGBT and Its Drivers in Active Inverter Part 9.3.2 Transducer with Signal Conditioning Boards 9.4 Software Design of TCLC-HAPF Experimental Prototype 9.5 Experimental Results 9.5.1 Experimental Results of TCLC-HAPF for Dynamic Inductive and Capacitive Reactive Power Compensations 9.5.2 Experimental Results of TCLC-HAPF for Reactive Power and Harmonic Compensations 9.5.3 Experimental Results of TCLC-HAPF for Unbalanced Loading Compensation 9.5.4 Experimental Results of TCLC-HAPF Compensation During Voltage Dip 9.5.5 Experimental Results of TCLC-HAPF Compensation Under Voltage Fault 9.6 Summary References 10 Conclusions and Prospective for Further Work Abstract 10.1 Conclusions 10.2 Perspectives for Future Works Biography of Authors