دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Ioan Doré Landau, Rogelio Lozano, Mohammed M'Saad, Alireza Karimi (auth.) سری: Communications and Control Engineering ISBN (شابک) : 0857296639, 9780857296634 ناشر: Springer-Verlag London سال نشر: 2011 تعداد صفحات: 590 [610] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Adaptive Control: Algorithms, Analysis and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل تطبیقی: الگوریتم ها ، آنالیزها و برنامه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کنترل تطبیقی (ویرایش دوم) نشان می دهد که چگونه می توان سطح مطلوبی از عملکرد سیستم را به صورت خودکار و در زمان واقعی حفظ کرد، حتی زمانی که پارامترهای فرآیند یا اختلال ناشناخته و متغیر هستند. این یک توضیح منسجم از بسیاری از جنبه های این زمینه است، مشکلاتی را که باید به آنها پرداخته شود و راه حل ها، اهمیت عملی آنها و کاربرد آنها را بیان می کند. جنبههای زمان گسسته کنترل تطبیقی برای منعکس کردن اهمیت رایانههای دیجیتال در کاربرد ایدههای ارائهشده تأکید شده است.
ویرایش دوم بهطور کامل اصلاح شده است تا با فصلهای جدید، پیشرفتهای اخیر در نظریه و کاربردها را روشن کند. در:
· کنترل تطبیقی چند مدلی با سوئیچینگ؛
· تنظیم تطبیقی مستقیم و غیرمستقیم. و
· جبران اختلال پیشخور تطبیقی.
بسیاری از الگوریتمها به تازگی در قالب MATLAB® ارائه شدهاند تا به کارگیری آنها در سیستمهای واقعی را تسهیل کنند. اسلایدهای تست شده در کلاس برای مربیان برای استفاده در آموزش این مطالب نیز اکنون ارائه شده است. تمام این مطالب الکترونیکی تکمیلی را می توانید از www.springer.com/978-0-85729-663-4 دانلود کنید.
مطالب اصلی نیز به روز شده و مجددا ویرایش شده است تا دیدگاه خود را در راستای ایده های مدرن نگه دارد و الگوریتم ها را با برنامه هایشان مرتبط تر کند و به خواننده زمینه ای محکم در این زمینه بدهد:
< p>· سنتز و تجزیه و تحلیل الگوریتم های سازگاری پارامتر؛· شناسایی مدل گیاهی بازگشتی در حلقه باز و بسته؛
· کنترل دیجیتال قوی برای کنترل تطبیقی؛
>· الگوریتم های سازگاری پارامترهای قوی؛
· ملاحظات و کاربردهای عملی، از جمله سیستم های انتقال انعطاف پذیر، کنترل ارتعاش فعال و رد اختلالات پهنای باند و مقدمه ای تکمیلی در مورد گالوانیزه گرم و کوره خشک کن فسفات.
محققان کنترل و ریاضیدانان کاربردی، کنترل تطبیقی را مورد علاقه قابل توجه و پایداری خواهند یافت و استفاده از مثال و کاربرد آن برای پزشکانی که با کارخانه با پارامترهای ناشناخته و متغیر کار می کنند جذاب خواهد بود.
< p>تمجید از چاپ اول:...خوب نوشته شده، جالب و قابل پیگیری است، به طوری که افزوده ارزشمندی به تک نگاری ها در کنترل تطبیقی برای سیستم های خطی زمان گسسته است... مناسب (حداقل در بخش) برای استفاده در دوره های تحصیلات تکمیلی در کنترل تطبیقی.
Adaptive Control (second edition) shows how a desired level of system performance can be maintained automatically and in real time, even when process or disturbance parameters are unknown and variable. It is a coherent exposition of the many aspects of this field, setting out the problems to be addressed and moving on to solutions, their practical significance and their application. Discrete-time aspects of adaptive control are emphasized to reflect the importance of digital computers in the application of the ideas presented.
The second edition is thoroughly revised to throw light on recent developments in theory and applications with new chapters on:
· multimodel adaptive control with switching;
· direct and indirect adaptive regulation; and
· adaptive feedforward disturbance compensation.
Many algorithms are newly presented in MATLAB® m-file format to facilitate their employment in real systems. Classroom-tested slides for instructors to use in teaching this material are also now provided. All of this supplementary electronic material can be downloaded from www.springer.com/978-0-85729-663-4.
The core material is also up-dated and re-edited to keep its perspective in line with modern ideas and more closely to associate algorithms with their applications giving the reader a solid grounding in:
· synthesis and analysis of parameter adaptation algorithms;
· recursive plant model identification in open and closed loop;
· robust digital control for adaptive control;
· robust parameter adaptation algorithms;
· practical considerations and applications, including flexible transmission systems, active vibration control and broadband disturbance rejection and a supplementary introduction on hot dip galvanizing and a phosphate drying furnace.
Control researchers and applied mathematicians will find Adaptive Control of significant and enduring interest and its use of example and application will appeal to practitioners working with unknown- and variable-parameter plant.
Praise for the first edition:
…well written, interesting and easy to follow, so that it constitutes a valuable addition to the monographs in adaptive control for discrete-time linear systems… suitable (at least in part) for use in graduate courses in adaptive control.
Cover Communications and Control Engineering Adaptive Control, 2nd Edition ISBN 9780857296634 Preface Expected Audience About the Content Pathways Through the Book The Website Acknowledgments Contents Abbreviations Chapter 1: Introduction to Adaptive Control 1.1 Adaptive Control-Why? 1.2 Adaptive Control Versus Conventional Feedback Control 1.2.1 Fundamental Hypothesis in Adaptive Control 1.2.2 Adaptive Control Versus Robust Control 1.3 Basic Adaptive Control Schemes 1.3.1 Open-Loop Adaptive Control 1.3.2 Direct Adaptive Control 1.3.3 Indirect Adaptive Control 1.3.4 Direct and Indirect Adaptive Control: Some Connections 1.3.5 Iterative Identification in Closed Loop and Controller Redesign 1.3.6 Multiple Model Adaptive Control with Switching 1.3.7 Adaptive Regulation 1.3.8 Adaptive Feedforward Compensation of Disturbances 1.3.9 Parameter Adaptation Algorithm 1.4 Examples of Applications 1.4.1 Open-Loop Adaptive Control of Deposited Zinc in Hot-Dip Galvanizing 1.4.2 Direct Adaptive Control of a Phosphate Drying Furnace 1.4.3 Indirect and Multimodel Adaptive Control of a Flexible Transmission 1.4.4 Adaptive Regulation in an Active Vibration Control System 1.4.5 Adaptive Feedforward Disturbance Compensation in an Active Vibration Control System 1.5 A Brief Historical Note 1.6 Further Reading 1.7 Concluding Remarks Chapter 2: Discrete-Time System Models for Control 2.1 Deterministic Environment 2.1.1 Input-Output Difference Operator Models 2.1.2 Predictor Form (Prediction for Deterministic SISO Models) Regressor Form 2.2 Stochastic Environment 2.2.1 Input-Output Models 2.2.2 Predictors for ARMAX Input-Output Models Rapprochement with the Deterministic Case Rapprochement with the Kalman Predictor Regressor Form 2.2.3 Predictors for Output Error Model Structure 2.3 Concluding Remarks 2.4 Problems Chapter 3: Parameter Adaptation Algorithms-Deterministic Environment 3.1 The Problem 3.2 Parameter Adaptation Algorithms (PAA)-Examples 3.2.1 Gradient Algorithm Improved Gradient Algorithm 3.2.2 Recursive Least Squares Algorithm 3.2.3 Choice of the Adaptation Gain A.1: Decreasing (Vanishing) Gain (RLS) A.2: Constant Forgetting Factor A.3: Variable Forgetting Factor A4: Constant Trace A.5: Decreasing Gain + Constant Trace A.6: Variable Forgetting Factor + Constant Trace A.7: Constant Gain (Gradient Algorithm) Choice of the Initial Gain F(0) Parameter Adaptation Algorithms with Scalar Adaptation Gain 3.2.4 Recursive Least Squares and Kalman Filter 3.2.5 Some Remarks on the Parameter Adaptation Algorithms 3.3 Stability of Parameter Adaptation Algorithms 3.3.1 Equivalent Feedback Representation of the Parameter Adaptation Algorithms and the Stability Problem 3.3.2 Stability Approach for the Synthesis of PAA Using the Equivalent Feedback Representation Output Error Adaptive Predictor 3.3.3 Positive Real PAA Structures \"Integral + Proportional\" Parameter Adaptation Algorithm Parameter Adaptation Algorithm with Leakage PAA for Systems with Time-Varying Parameters 3.3.4 Parameter Adaptation Algorithms with Time-Varying Adaptation Gain A General Structure and Stability of PAA Interpretation of the Results 3.3.5 Removing the Positive Real Condition Output Error with Extended Prediction Model Signal Dependent Condition 3.4 Parametric Convergence 3.4.1 The Problem 3.4.2 Persistently Exciting Signals 3.4.3 Parametric Convergence Condition 3.5 Concluding Remarks 3.6 Problems Chapter 4: Parameter Adaptation Algorithms-Stochastic Environment 4.1 Effect of Stochastic Disturbances 4.2 The Averaging Method for the Analysis of Adaptation Algorithms in a Stochastic Environment 4.3 The Martingale Approach for the Analysis of PAA in a Stochastic Environment 4.4 The Frequency Domain Approach 4.5 Concluding Remarks 4.6 Problems Chapter 5: Recursive Plant Model Identification in Open Loop 5.1 Recursive Identification in the Context of System Identification 5.2 Structure of Recursive Parameter Estimation Algorithms 5.3 Recursive Identification Methods Based on the Whitening of the Prediction Error (Type I) 5.3.1 Recursive Least Squares (RLS) 5.3.2 Extended Least Squares (ELS) 5.3.3 Output Error with Extended Prediction Model (OEEPM) 5.3.4 Recursive Maximum Likelihood (RML) 5.3.5 Generalized Least Squares (GLS) 5.4 Validation of the Models Identified with Type I Methods 5.4.1 Whiteness Test 5.5 Identification Methods Based on the Decorrelation of the Observation Vector and the Prediction Error (Type II) 5.5.1 Output Error with Fixed Compensator 5.5.2 Output Error with Adjustable Compensator 5.5.3 Filtered Output Error 5.5.4 Instrumental Variable with Auxiliary Model 5.6 Validation of the Models Identified with Type II Methods 5.6.1 Uncorrelation Test 5.7 Selection of the Pseudo Random Binary Sequence 5.7.1 Pseudo Random Binary Sequences (PRBS) 5.8 Model Order Selection 5.8.1 A Practical Approach for Model Order Selection A Priori Choice of nA Initial Choice of d and nB Determination of Time Delay d (First Approximation) Determination of the (nA)max and (nB)max Initial Choice of nC and nD (Noise Model) 5.8.2 Direct Order Estimation from Data 5.9 An Example: Identification of a Flexible Transmission 5.10 Concluding Remarks 5.11 Problems Chapter 6: Adaptive Prediction 6.1 The Problem 6.2 Adaptive Prediction-Deterministic Case 6.2.1 Direct Adaptive Prediction 6.2.2 Indirect Adaptive Prediction 6.3 Adaptive Prediction-Stochastic Case 6.3.1 Direct Adaptive Prediction 6.3.2 Indirect Adaptive Prediction-Stochastic Case 6.4 Concluding Remarks 6.5 Problems Chapter 7: Digital Control Strategies 7.1 Introduction 7.2 Canonical Form for Digital Controllers 7.3 Pole Placement 7.3.1 Regulation Choice of HR and HS-Examples 7.3.2 Tracking 7.3.3 Some Properties of the Pole Placement Time-Domain Design Alternative Expression of S and R in the Case of Auxiliary Poles Predictor Interpretation of the Pole Placement Youla-Kucera Parameterization Another Time-Domain Interpretation Regressor Formulation 7.3.4 Some Particular Pole Choices Internal Model Control (IMC) Model Algorithmic Control 7.4 Tracking and Regulation with Independent Objectives 7.4.1 Polynomial Design Regulation (Computation of R(q-1) and S(q-1)) Tracking (Computation of T(q-1)) Controller Equation 7.4.2 Time Domain Design Predictor Interpretation of the Tracking and Regulation with Independent Objectives Taking into Account Measurable Disturbances 7.5 Tracking and Regulation with Weighted Input 7.6 Minimum Variance Tracking and Regulation 7.6.1 Design of Minimum Variance Control Direct Design Use of the Separation Theorem Rapprochement with Tracking and Regulation with Independent Objective Properties of the Tracking (Regulation) Error Rejection of Disturbances 7.6.2 Generalized Minimum Variance Tracking and Regulation 7.7 Generalized Predictive Control 7.7.1 Controller Equation 7.7.2 Closed-Loop Poles 7.7.3 Recursive Solutions of the Euclidian Divisions Recursive Solution of the Euclidian Division (7.202) Recursive Solution of the Euclidian Division (7.204) 7.8 Linear Quadratic Control 7.9 Concluding Remarks 7.10 Problems Chapter 8: Robust Digital Control Design 8.1 The Robustness Problem 8.2 The Sensitivity Functions 8.3 Robust Stability 8.3.1 Robustness Margins Modulus Margin (DeltaM) Delay Margin (Deltatau) 8.3.2 Model Uncertainties and Robust Stability 8.3.3 Robustness Margins and Robust Stability 8.4 Definition of \"Templates\" for the Sensitivity Functions 8.5 Properties of the Sensitivity Functions 8.5.1 Output Sensitivity Function Design of the Resonant Pole-Zero Filter HSi/PFi 8.5.2 Input Sensitivity Function 8.5.3 Noise Sensitivity Function 8.6 Shaping the Sensitivity Functions 8.7 Other Design Methods 8.8 A Design Example: Robust Digital Control of a Flexible Transmission 8.9 Concluding Remarks 8.10 Problems Chapter 9: Recursive Plant Model Identification in Closed Loop 9.1 The Problem 9.1.1 The Basic Equations 9.2 Closed-Loop Output Error Algorithms (CLOE) 9.2.1 The Closed-Loop Output Error Algorithm (CLOE) 9.2.2 Filtered Closed-Loop Output Error Algorithm (F-CLOE) 9.2.3 Extended Closed-Loop Output Error Algorithm (X-CLOE) 9.3 Filtered Open-Loop Recursive Identification Algorithms (FOL) 9.3.1 Filtered Recursive Least Squares 9.3.2 Filtered Output Error 9.4 Frequency Distribution of the Asymptotic Bias in Closed-Loop Identification 9.4.1 Filtered Open-Loop Identification Algorithms 9.4.2 Closed-Loop Output Error Identification Algorithms 9.5 Validation of Models Identified in Closed-Loop 9.5.1 Statistical Validation Uncorrelation Test Whiteness Test 9.5.2 Pole Closeness Validation 9.5.3 Time Domain Validation 9.6 Iterative Identification in Closed-Loop and Controller Redesign 9.7 Comparative Evaluation of the Various Algorithms 9.7.1 Simulation Results 9.7.2 Experimental Results: Identification of a Flexible Transmission in Closed-Loop 9.8 Iterative Identification in Closed Loop and Controller Redesign Applied to the Flexible Transmission 9.9 Concluding Remarks 9.10 Problems Chapter 10: Robust Parameter Estimation 10.1 The Problem 10.2 Input/Output Data Filtering 10.3 Effect of Disturbances 10.4 PAA with Dead Zone 10.5 PAA with Projection 10.6 Data Normalization 10.6.1 The Effect of Data Filtering 10.6.2 Alternative Implementation of Data Normalization 10.6.3 Combining Data Normalization with Dead Zone 10.7 A Robust Parameter Estimation Scheme 10.8 Concluding Remarks 10.9 Problems Chapter 11: Direct Adaptive Control 11.1 Introduction 11.2 Adaptive Tracking and Regulation with Independent Objectives 11.2.1 Basic Design Analysis Alternative Direct Adaptive Control Design via Adaptive Prediction 11.2.2 Extensions of the Design Filtering of the Measurement Vector and of the Adaptation Error Taking into Account Measurable Disturbances 11.3 Adaptive Tracking and Regulation with Weighted Input 11.4 Adaptive Minimum Variance Tracking and Regulation 11.4.1 The Basic Algorithms Exact Adaptive Minimum Variance Tracking and Regulation The case d=0 Approximate Adaptive Minimum Variance Tracking and Regulation The case d=0 The case d>0 Adaptive Minimum Variance Regulation 11.4.2 Asymptotic Convergence Analysis Exact Adaptive Minimum Variance Tracking and Regulation Approximate Adaptive Minimum Variance Tracking and Regulation 11.4.3 Martingale Convergence Analysis 11.5 Robust Direct Adaptive Control 11.5.1 The Problem 11.5.2 Direct Adaptive Control with Bounded Disturbances 11.5.3 Direct Adaptive Control with Unmodeled Dynamics 11.6 An Example 11.7 Concluding Remarks 11.8 Problems Chapter 12: Indirect Adaptive Control 12.1 Introduction 12.2 Adaptive Pole Placement 12.2.1 The Basic Algorithm Step I: Estimation of the Plant Model Parameters Step II: Computation of the Controller Parameters and of the Control Law 12.2.2 Analysis of the Indirect Adaptive Pole Placement 12.2.3 The \"Singularity\" Problem The Modification Algorithm 12.2.4 Adding External Excitation 12.3 Robust Indirect Adaptive Control 12.3.1 Standard Robust Adaptive Pole Placement Step I: Estimation of the Plant Model Parameters Step II: Computation of the Control Law 12.3.2 Modified Robust Adaptive Pole Placement 12.3.3 Robust Adaptive Pole Placement: An Example 12.4 Adaptive Generalized Predictive Control 12.5 Adaptive Linear Quadratic Control 12.6 Adaptive Tracking and Robust Regulation 12.7 Indirect Adaptive Control Applied to the Flexible Transmission 12.7.1 Adaptive Pole Placement 12.7.2 Adaptive PSMR Generalized Predictive Control 12.8 Concluding Remarks 12.9 Problems Chapter 13: Multimodel Adaptive Control with Switching 13.1 Introduction 13.2 Principles of Multimodel Adaptive Control with Switching 13.2.1 Plant with Uncertainty 13.2.2 Multi-Estimator 13.2.3 Multi-Controller 13.2.4 Supervisor 13.3 Stability Issues 13.3.1 Stability of Adaptive Control with Switching 13.3.2 Stability of the Injected System Stability with Common Lyapunov Matrix Stability by Minimum Dwell-Time 13.4 Application to the Flexible Transmission System 13.4.1 Multi-Estimator 13.4.2 Multi-Controller 13.4.3 Experimental Results Experiment 1 Experiment 2 Experiment 3 13.4.4 Effects of Design Parameters Number of Fixed and Adaptive Models Parameter Adaptation Algorithm 13.5 Concluding Remarks 13.6 Problems Chapter 14: Adaptive Regulation-Rejection of Unknown Disturbances 14.1 Introduction 14.2 Plant Representation and Controller Design 14.3 Robustness Considerations 14.4 Direct Adaptive Regulation 14.5 Stability Analysis 14.6 Indirect Adaptive Regulation 14.7 Adaptive Rejection of Multiple Narrow Band Disturbances on an Active Vibration Control System 14.7.1 The Active Vibration Control System 14.7.2 Experimental Results Plant Identification and Central Controller Design Direct Adaptive Regulation Under the Effect of Two Sinusoidal Disturbances Comparison Between Direct and Indirect Adaptive Regulation 14.8 Concluding Remarks 14.9 Problems Chapter 15: Adaptive Feedforward Compensation of Disturbances 15.1 Introduction 15.2 Basic Equations and Notations 15.3 Development of the Algorithms 15.4 Analysis of the Algorithms 15.4.1 The Deterministic Case-Perfect Matching 15.4.2 The Stochastic Case-Perfect Matching 15.4.3 The Case of Non-Perfect Matching Boundedness of the Residual Error Bias Distribution 15.4.4 Relaxing the Positive Real Condition 15.5 Adaptive Attenuation of Broad Band Disturbances on an Active Vibration Control System 15.5.1 System Identification 15.5.2 Experimental Results 15.6 Concluding Remarks 15.7 Problems Chapter 16: Practical Aspects 16.1 Introduction 16.2 The Digital Control System 16.2.1 Selection of the Sampling Frequency 16.2.2 Anti-Aliasing Filters 16.2.3 Digital Controller 16.2.4 Effects of the Digital to Analog Converter 16.2.5 Handling Actuator Saturations (Anti-Windup) 16.2.6 Manual to Automatic Bumpless Transfer 16.2.7 Effect of the Computational Delay 16.2.8 Choice of the Desired Performance 16.3 The Parameter Adaptation Algorithm 16.3.1 Scheduling Variable alpha1(t) 16.3.2 Implementation of the Adaptation Gain Updating-The U-D Factorization 16.4 Adaptive Control Algorithms 16.4.1 Control Strategies 16.4.2 Adaptive Control Algorithms 16.5 Initialization of Adaptive Control Schemes 16.6 Monitoring of Adaptive Control Systems 16.7 Concluding Remarks Appendix A: Stochastic Processes Appendix B: Stability Appendix C: Passive (Hyperstable) Systems C.1 Passive (Hyperstable) Systems C.2 Passivity-Some Definitions C.3 Discrete Linear Time-Invariant Passive Systems C.4 Discrete Linear Time-Varying Passive Systems C.5 Stability of Feedback Interconnected Systems C.6 Hyperstability and Small Gain Appendix D: Martingales References Index