دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Mohamed Eltoweissy, Stephan Olariu, Mohamed Younis (auth.), Jun Zheng, David Simplot-Ryl, Victor C. M. Leung (eds.) سری: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 49 ISBN (شابک) : 9783642179938, 9783642179945 ناشر: Springer-Verlag Berlin Heidelberg سال نشر: 2010 تعداد صفحات: 553 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب شبکه های ویژه: شبکه های ارتباطی کامپیوتری، تحلیل الگوریتم و پیچیدگی مسائل، مدیریت سیستم های محاسباتی و اطلاعاتی، رمزگذاری داده ها، عملکرد و ارزیابی سیستم، شبیه سازی و مدل سازی
در صورت تبدیل فایل کتاب Ad Hoc Networks: Second International Conference, ADHOCNETS 2010, Victoria, BC, Canada, August 18-20, 2010, Revised Selected Papers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های ویژه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شبکههای Ad hoc، که شامل انواع شبکههای مستقل برای اهداف خاص هستند، نویدبخش طیف وسیعی از کاربردهای غیرنظامی، تجاری و نظامی هستند. این شبکهها در ابتدا بهعنوان مجموعهای از گرههای ثابت متحرک یا ثابت تصور میشدند که به صورت پویا خود را به صورت خودکار در یک شبکه بیسیم بدون تکیه بر زیرساختهای شبکه موجود یا مدیریت متمرکز پیکربندی میکنند. با پیشرفتهای چشمگیر در دهه گذشته، مفهوم شبکههای ad hoc در حال حاضر دامنه وسیعتری را در بر میگیرد و به انواع بسیاری از شبکههای بیسیم مستقل که برای یک کار یا عملکرد خاص طراحی و مستقر شدهاند، مانند شبکههای حسگر بیسیم، شبکههای خودرویی، اشاره دارد. شبکه های خانگی و غیره. برخلاف الگوی سنتی شبکههای بیسیم، چنین شبکههایی با اتصالات پراکنده، ارتباطات بسیار مستعد خطا، عملکرد مستقل توزیعشده و مسیرهای رله چند هاپ شکننده مشخص میشوند. پارادایم جدید شبکه های بی سیم مستلزم بررسی مجدد بسیاری از مفاهیم و پروتکل های تثبیت شده، و ایجاد درک جدیدی از مشکلات اساسی مانند تداخل، تحرک، اتصال، ظرفیت و امنیت و غیره است. در حالی که پیشرفت تحقیقات نظری در زمینه تحقیقات بنیادی و عملی در مورد سیاستها، الگوریتمها و پروتکلهای کارآمد ضروری است، توسعه برنامههای کاربردی مفید، نمونههای اولیه آزمایشی و استقرارهای دنیای واقعی برای دستیابی به تأثیر فوری بر جامعه برای موفقیت این امر ضروری است. پارادایم شبکه بی سیم.
Ad hoc networks, which include a variety of autonomous networks for specific purposes, promise a broad range of civilian, commercial, and military applications. These networks were originally envisioned as collections of autonomous mobile or stationary nodes that dynamically auto-configure themselves into a wireless network without relying on any existing network infrastructure or centralized administration. With the significant advances in the last decade, the concept of ad hoc networks now covers an even broader scope, referring to the many types of autonomous wireless networks designed and deployed for a specific task or function, such as wireless sensor networks, vehicular networks, home networks, and so on. In contrast to the traditional wireless networking paradigm, such networks are all characterized by sporadic connections, highly error-prone communications, distributed autonomous operation, and fragile multi-hop relay paths. The new wireless networking paradigm necessitates reexamination of many established concepts and protocols, and calls for developing a new understanding of fundamental problems such as interference, mobility, connectivity, capacity, and security, among others. While it is essential to advance theoretical research on fundamental and practical research on efficient policies, algorithms and protocols, it is also critical to develop useful applications, experimental prototypes, and real-world deployments to achieve an immediate impact on society for the success of this wireless networking paradigm.
Cover......Page 1
Lecture Notes of the Institute\rfor Computer Sciences, Social-Informatics\rand Telecommunications Engineering 49......Page 2
Ad Hoc Networks......Page 3
ISBN-13 9783642179938......Page 4
Preface......Page 6
Organization......Page 7
Table of Contents......Page 12
The Vehicular Model......Page 17
Why Vehicular Networks?......Page 18
Looking into the Crystal Ball......Page 20
Autonomous Vehicular Clouds......Page 21
Application Scenarios......Page 22
Traffic Management Scenarios......Page 23
Asset Management Scenarios......Page 25
AVC Research Issues......Page 27
References......Page 30
Introduction......Page 33
Research Method......Page 34
Findings from the Rescuing Operation Study......Page 35
Findings from the Fire Fighter Study......Page 36
How User Interface Solutions for Emergency Response Are Influenced by Ad Hoc Networks......Page 37
Applications May Obtain Useful Information in Alternative Ways......Page 38
Local Leaders......Page 39
Field Workers......Page 40
User Interface Functionality That May Be Specialized to Different Types of Operations......Page 42
Adaptive Behavior in the User Interfaces......Page 43
Requirements to Ad Hoc Networks When Used in Emergency Response......Page 44
Related Work......Page 45
Conclusions and Future Work......Page 46
References......Page 47
Introduction......Page 50
Passive Monitoring......Page 51
The Architecture of Sensorium......Page 52
Message Routing......Page 53
The Request Handler......Page 54
The User Interface......Page 55
Deploying Sensorium......Page 56
Software......Page 57
Experiments......Page 58
Related Work......Page 59
Conclusion......Page 61
References......Page 62
Introduction......Page 64
Related Work......Page 65
Usage Scenarios......Page 67
Channel Concept......Page 69
Pricing Scheme......Page 70
Credit System......Page 75
Putting Everything Together......Page 76
Conclusion......Page 77
References......Page 78
Introduction......Page 80
Location Management in MANETs......Page 81
Service Discovery Inspired by Field Theory......Page 82
Location Management over Heterogeneous Networks – The Architecture......Page 83
Mobility Aware Service Selection and Packet Relay......Page 84
Reliability vs. Distance......Page 85
Reliability Measurement......Page 86
Location Update......Page 88
Performance Evaluations......Page 89
Conclusion......Page 95
References......Page 96
Introduction......Page 98
Experimentation Setup......Page 99
The MeshDVnet Testbed......Page 100
Measurement Setup......Page 101
Dominant Route......Page 102
Route Persistence......Page 103
Route Oscillation......Page 105
Sub-dominant Routes......Page 107
Impact of the Number of Hops......Page 108
Available Routes......Page 109
Persistence......Page 110
Sub-dominant Routes......Page 111
References......Page 112
Motivation......Page 114
Related Work......Page 116
gossip6......Page 117
gossip9......Page 118
Experiment Setup......Page 119
Figure Format Description and gossip3......Page 121
Advanced Gossip Routing......Page 123
Redundancy......Page 125
Conclusion......Page 127
References......Page 128
Introduction......Page 130
Existing Routing Schemes and Their Problems......Page 131
Overview......Page 132
Procedures......Page 133
Implementation of the Proposed Method and Prelimimary Experiments......Page 139
Experiments to Evaluation......Page 141
Conclusion and Future Work......Page 144
References......Page 145
Introduction......Page 146
Reducing Power Consumption......Page 147
Purpose of This Research......Page 148
Problems with Eliminating Receiver Rircuits......Page 150
The Proposed Protocol......Page 151
Evaluation of Data Loss Rate by Simulation......Page 152
Evaluation Using Actual Equipment......Page 156
Power Consumption......Page 157
Conclusion......Page 160
References......Page 161
Introduction......Page 162
Transmitter Detection vs. Receiver Detection Sensing Approaches......Page 163
Blind Sensing vs. Signal Specific Sensing Approaches......Page 164
Cooperative Spectrum Sensing Strategies......Page 165
Total Cooperation......Page 167
Scenario Setup and Protocol Description......Page 168
Performance Evaluation......Page 170
References......Page 173
Introduction......Page 176
Proposed Cooperative IoT Model......Page 178
Analytical System Model......Page 179
Simulation Results......Page 181
Conclusions......Page 182
References......Page 183
Introduction......Page 184
Related Work......Page 186
Fuzzification......Page 187
Event Semantics......Page 188
Spatial Semantics......Page 189
Separating the Rule-Base......Page 190
Incomplete Rule-Base......Page 191
Experiments......Page 192
Analysis......Page 195
References......Page 198
Introduction......Page 201
Background and Related Works......Page 202
Description of GOAL......Page 204
Basic Idea......Page 205
The GOAL Protocol......Page 206
Analysis of GOAL......Page 208
Simulation Results......Page 210
References......Page 215
Introduction......Page 217
Time Synchronized Channel Hopping......Page 219
Goal and Metrics......Page 221
Aloha-Based Scheduling......Page 222
Reservation-Based Scheduling......Page 223
Propagation Model......Page 224
Co-channel Interference Model......Page 226
Static Metric: Relative Connectivity......Page 228
Dynamic Metric: Link Durations......Page 229
Conclusions and Future Work......Page 230
References......Page 231
Introduction......Page 233
Related Work......Page 235
Reinforcement Learning......Page 237
Coordinator Traffic Estimation......Page 239
The DCLA Agent......Page 240
Beacon Order and Superframe Order Selection......Page 243
Simulation Results......Page 244
Conclusion and Future Work......Page 247
References......Page 248
Introduction......Page 249
Scheduling in IEEE 802.16 WMN......Page 251
Proposed EbMR-CS Algorithm......Page 253
Network Model......Page 254
EbM Routing Algorithm......Page 255
Channel Allocation......Page 256
Multi-transceiver Scheduling Algorithm......Page 258
System Performances of Proposed EbMR-CS Algorithm......Page 259
References......Page 263
Introduction......Page 265
Energy Model......Page 267
Model for State Estimation of a Dynamical System......Page 269
Observation Model for Rayleigh Fading......Page 270
Node Selection by Information......Page 271
Energy Efficient Tracking......Page 273
The Solution in the Dynamic Scenario......Page 274
Optimal Node Selection......Page 275
Tracking Accuracy......Page 276
Energy Consumption......Page 278
References......Page 279
Introduction......Page 281
Related Work......Page 282
General Description......Page 283
Transmission Period......Page 284
Waiting Period......Page 285
Fixed Priority......Page 286
Simulation Results......Page 287
Network and Scenarios Description......Page 288
Results......Page 289
Conclusion......Page 295
References......Page 296
Introduction......Page 297
Related Work......Page 298
New Membership Requesters (NEW_MEM_REQs) Database......Page 300
Alternative Schedule Database (ALT_SCH)......Page 301
Mobility and Traffic Adapted Techniques in CBR-Mobile......Page 302
Performance Evaluation of Proposed CBR-Mobile......Page 306
References......Page 311
Introduction......Page 313
Related Work......Page 315
Mobility Induced Errors and Inaccurate Location Service Positions......Page 317
Simulation Models and Scenario Establishment......Page 320
Experimental Results......Page 322
References......Page 327
Introduction......Page 330
Related Work......Page 332
On Message Authentication in VANETs......Page 333
Preliminaries......Page 334
Payload Preprocessing......Page 335
RSU Proxy Signature......Page 336
Enhancement......Page 337
Security Analysis......Page 338
Simulation......Page 339
References......Page 342
Introduction......Page 344
System and Adversary Models......Page 346
Problem Statement......Page 347
A Faster Signature Verification Scheme......Page 348
Selection of System Parameters......Page 352
Case Study......Page 354
Performance in the Ideal Case......Page 355
Security and Performance under Attacks from Independent Adversaries......Page 356
Conclusions......Page 357
References......Page 358
Introduction......Page 360
Related Work......Page 362
Operations over Elliptic Curves......Page 363
Presentation......Page 365
Example of Use......Page 366
Related Attacks and Results......Page 367
Practical Issues......Page 368
Experimental Results......Page 369
Enlarging the Number of Allowing Authentication Functions......Page 370
References......Page 373
Introduction......Page 375
Problem Specification......Page 377
Solution to the Problem......Page 379
Simulation Scenario and Results......Page 382
Simulation Results......Page 383
References......Page 385
Introduction......Page 387
Distributed Hierarchical Routing Protocols......Page 388
Multi-hop Routing......Page 389
Clustering......Page 390
Cluster Scheduling......Page 392
Simulation and Results......Page 393
Different Base Station Locations......Page 394
Different Node Densities......Page 395
Transmission Distance......Page 397
References......Page 398
Introduction......Page 400
Foundations and Design Rationale......Page 402
Device Association and Handoff Protocol......Page 404
Relay Assessment Process......Page 406
RSSI Estimation at the Access Point......Page 407
Experiment Setup......Page 409
Experiment Results......Page 410
Conclusions......Page 414
References......Page 415
Introduction......Page 416
Relay Nodes Placement, Clustering and Routing......Page 418
Mobility in Sensor Networks......Page 419
Network Model......Page 420
Notation Used......Page 421
ILP Formulation for Minimizing the Number of Relay Nodes......Page 422
Justification of the ILP Equations......Page 423
Computation of Trajectory......Page 424
Simulation of ILP Formulation......Page 426
Simulation of Trajectory Computation Algorithm......Page 428
Conclusions......Page 429
References......Page 430
Introduction......Page 432
Related Work......Page 433
Grouping Problem......Page 434
Hop Count Estimation Formula......Page 435
The Hop Count Based Minimum Spanning Tree......Page 436
The Residual Problem......Page 437
Evaluation Metrics......Page 439
The Selection of a Balancing Factor in BST-MIP......Page 440
Performance Comparison......Page 441
References......Page 444
Introduction......Page 445
Detailed Descriptions of the IPAA Protocol......Page 447
Analytical Modeling of Address Allocation Protocols......Page 451
Expectations of the Performance Measures......Page 452
The General Case $\\tilde{n} = n$......Page 453
IPAA vs. MANETconf Protocol......Page 457
Analytical and Simulation Results for the Performance Measures of the IPAA Protocol......Page 458
References......Page 461
Introduction......Page 463
Analysis of One-Hop Packet Delay......Page 466
Mean Packet Service Time at MAC Layer......Page 467
Numerical and Simulation Results......Page 469
References......Page 471
Introduction......Page 473
System Lag Occurrence Probability......Page 474
Tracking Strategies......Page 475
Acquisition Strategies......Page 477
Packet-Based Frequency Hopping Simulator......Page 479
Simulation Results......Page 481
References......Page 485
Introduction......Page 487
Related Work......Page 488
Proposed Wireless Biomedical Sensor Networks Architecture......Page 489
Body Channel Model......Page 491
Transmitter and Receiver Architectures......Page 492
Performance of the TR Receiver Node in the Presence of ISI......Page 494
Conclusion......Page 495
References......Page 496
Background......Page 498
Basic Description of the System......Page 499
Protocol Description – Area Discovery......Page 500
Area Discovery......Page 503
Simulation......Page 504
Discussion......Page 506
References......Page 509
Introduction......Page 511
Motivation for Using WSN......Page 512
Localization......Page 513
Hardware Description......Page 514
Software Description......Page 515
Networks Topology......Page 516
Node Deployment......Page 517
WSN to Internet Communication......Page 518
Link Characteristics......Page 519
Some Challenges......Page 520
References......Page 521
Introduction......Page 523
Interference Model......Page 525
The NP-Completeness of Minimum Total Node Interference in Geometric Graphs......Page 526
Heuristics......Page 532
References......Page 536
Introduction......Page 540
Link Usage Spectrum and Network Transplant Error......Page 543
Comparing Protocol Performance in Two Settings......Page 545
Experimental Setup......Page 546
Messaging Layer......Page 547
Results......Page 548
Analytic Model for 1-Dimensional and 2-Dimensional Uniform Graphs......Page 550
Validation of Analytical Approximations......Page 552
Conclusion and Future Work......Page 555
References......Page 556
Author Index......Page 557