دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: American Chemical Society. Division of Chemical Education., Blaser. Mark, Clark. Ted M., Lamont. Liana B., Stewart. Jaclyn J سری: ACS symposium series 1322 ISBN (شابک) : 9780841236660, 0841236666 ناشر: American Chemical Society سال نشر: 2019 تعداد صفحات: 214 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری فعال در شیمی عمومی: راه حل های کل کلاس: یادگیری فعال، شیمی -- مطالعه و تدریس (بالا)، تدریس در دانشگاه -- روش شناسی، شیمی -- مطالعه و تدریس (عالی)، تدریس در دانشگاه -- روش شناسی
در صورت تبدیل فایل کتاب Active learning in general chemistry: whole-class solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری فعال در شیمی عمومی: راه حل های کل کلاس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استفاده از تنظیمات کلاس درس معکوس برای تغییر تمرکز یک درس شیمی عمومی از دانش موضوعی به مهارت های یادگیری و حل مسئله: داستان دانش آموزانی که از کلاسی لذت می برند که انتظار داشتند از آن متنفر باشند - ترکیب آمادگی قبل از کلاس با فعالیت های مشترک در کلاس برای بهبود مشارکت و موفقیت دانش آموز در شیمی عمومی - استفاده از کار گروهی مبتنی بر کلیک که توسط یک فرآیند آموزشی اصلاح شده توسط همتایان در یک کلاس درس شیمی عمومی ورق خورده بسیار موفق تسهیل می شود - به حداکثر رساندن کارایی یادگیری در شیمی عمومی - چرخش شیمی عمومی در کلاس های کوچک: ادراک دانش آموزان و موفقیت -- یادگیری فعال در قالب سالن سخنرانی بزرگ -- تحول برنامه درسی در مقیاس بزرگ و مبتنی بر تیم و مشارکت دانش آموز در شیمی عمومی I و II -- یادگیری فعال در شیمی عمومی ترکیبی آنلاین -- تحول درسی برای حمایت اول سال تحصیلی شیمی برای دانشجویان مهندسی -- محیط های یادگیری کلاس درس معکوس در شیمی عمومی: چه تأثیری بر عملکرد دانش آموزان در شیمی آلی دارد؟
Using flipped classroom settings to shift the focus of a general chemistry course from topic knowledge to learning and problem solving skills : a tale of students enjoying the class they were expecting to hate -- Combining pre-class preparation with collaborative in-class activities to improve student engagement and success in general chemistry -- Using clicker-based group work facilitated by a modified peer instruction process in a highly successful flipped general chemistry classroom -- Maximizing learning efficiency in general chemistry -- Flipping general chemistry in small classes : students' perception and success -- Active learning in the large lecture hall format -- Large-scale, team-based curriculum transformation and student engagement in general chemistry I and II -- Active learning in hybrid-online general chemistry -- A course transformation to support first-year chemistry education for engineering students -- Flipped classroom learning environments in general chemistryv: what is the impact on student performance in organic chemistry?
Active Learning in General Chemistry: Whole-Class Solutions......Page 2
Active Learning in General Chemistry: Whole-Class Solutions......Page 4
Library of Congress Cataloging-in-Publication Data......Page 5
Foreword......Page 6
Editors’ Biographies......Page 8
Subject Index......Page 9
Preface......Page 10
References......Page 12
Using Flipped Classroom Settings to Shift the Focus of a General Chemistry Course from Topic Knowledge to Learning and Problem-Solving Skills: A Tale of Students Enjoying the Class They Were Expecting to Hate......Page 14
Retention......Page 15
Class Composition......Page 16
Course Structure......Page 17
Figure 1. A moment of collaborative learning in which students and instructors discuss unclear concepts 16.......Page 18
Figure 2. A snapshot of a video recording. If the main window acts as a virtual board where I am writing a mathematical demonstration or drawing a chemical structure, the side window feature the conversation between the instructor and a student, in a dynamic conversation that mimics the type of interaction students are encouraged to have with the instructor and peer-teachers.......Page 19
Figure 3. An excerpt from a worksheet that forces students to gather information: the ability to effectively organize knowledge is often lacking in students, resulting in students overlooking major parts of what they are expected to learn.......Page 20
Peer Instruction and Peer Led Team Learning......Page 21
Figure 4. An excerpt of a worksheet showing (i) Part 1: Prior knowledge needed to approach this topic; (ii) Part 2: concepts from video/book; and (iii) Part 3: activities of the day. Part 3 requires to actively build graphs and treat data; students need to shift their mind frame from seeing problem solving as a procedural protocol (follow the right steps mechanically and obtain the correct numerical result) to analytical thinking (what would actually be happening, if you were doing this in the lab?). A higher level of thinking and deeper level of situation analysis is needed, if we want students to acquire skills of the “evaluate” order in Bloom’s taxonomy.......Page 22
Oral Exams......Page 23
Academic Results......Page 24
Retention in Course......Page 25
Student Feelings......Page 26
Retention in Major......Page 29
References......Page 31
Combining Pre-class Preparation with Collaborative In-Class Activities to Improve Student Engagement and Success in General Chemistry......Page 34
Pre-class Preparation......Page 35
Figure 1. (a) Students are assigned screencasts to view and a pre-class quiz to take prior to each class session via our learning management system (Canvas). (b) Screencasts are relatively short video lectures (YouTube). (c) They cover foundational knowledge upon which the lecture activities are based.......Page 36
Figure 2. Survey results from General Chemistry 1 regarding students’ perceptions of reading the textbook and viewing video screencasts. Students were much more likely to view screencasts than read the textbook and found the screencasts to be more beneficial to their learning. The survey was given during Fall 2017, and the results are fairly typical of those from other semesters.......Page 37
Figure 4. Survey results for students’ perception of the learning benefits of taking pre-class quizzes.......Page 38
Meaningful Collaborative In-Class Activities......Page 39
Figure 6. In the “flipped classroom” model, prior to class students are asked to “remember” and “understand” background material so class time can be used primarily for higher cognitive work, such as “apply” and “analyze”.......Page 40
Figure 7. General Chemistry students (Spring 2018) are given a pre-class assignment (a) including a screencast on balancing redox reactions (b). This is followed by pre-class quiz questions (c) and student results (d) on that topic. As expected, students have not mastered this topic, and similar problems (e) are worked on collaboratively during the next class period.......Page 41
Figure 8. Item analysis of 2nd midterm exam results dealing with chemical reactions, stoichiometry and thermochemistry. Questions involving titration, thermochemical (enthalpy) and calorimetry calculations had the lowest results, which correlates with the instructor’s previous experience and expectations. However, students also did poorly on identifying electrolytes, which was somewhat unexpected.......Page 42
Figure 10. Survey results for students’ perception of the learning benefits of peer instruction, instructor explanations, discussion activities and laboratory experiments. Students generally found collaborative work on learning activities to be helpful to their learning. Group work was rated as more beneficial when the student to instructor ratio was lower (discussion activities), and the instructor’s explanations were found to be particularly valuable.......Page 43
Figure 11. (a) The course transformation resulted in a decrease in students not passing Gen Chem 1, fewer students receiving Cs in Gen Chem 2, and more students receiving As in both courses. (b) This approach also resulted in statistically significant improvements in midterm exam results (left) and final exam results (right).......Page 44
References......Page 45
Active Learning, Peer Instruction and Clicker Use......Page 48
Figure 1. Our visualization of a typical Peer Instruction cycle as originally developed by Eric Mazur.......Page 49
Summary of Our Flipped Classroom......Page 51
Building a Learning Arc......Page 53
The New Taxonomy......Page 54
Our Clicker-Based Problem-Solving Sessions and Incorporation of the Clicker Taxonomy......Page 56
Figure 3. Our modified form of the Original Peer Instruction Cycle.......Page 57
Figure 5. Slides used to show the solutions to the L2a (A) and L2b (B) questions.......Page 61
Figure 7. Slides used to show the solutions to the L4 question.......Page 62
Student Success and Perceptions of the Course......Page 63
References......Page 64
Maximizing Learning Efficiency in General Chemistry......Page 68
Active Lecture......Page 69
Figure 1. Arrangement of small groups in a large theatre-style lecture hall. Each number is a section number used during enrollment to place students into groups. Each color represents one group that is mentored by an undergraduate leader. There is some variation in group size because we forecast enrollment more than a year in advance, and our institutions have experienced relatively large changes in enrollment year-to-year over the past several years, and thus we have to do some last-minute adjustment. The back of the large lecture hall is not used and thus those boxes are therefore blank.......Page 70
Figure 2. Students in active lecture. This photograph was taken during the beginning of a breakout session, and thus most students are silently contemplating the assigned exercise at this moment. The frequency of student-student and student-leader talking tends to increase as the session progresses. The peer leaders are the students who are standing. A large theatre-style lecture hall is not ideal for this pedagogy, but our campuses are devoid of spaces designed for large-enrollment active learning approaches, so we make what we have available work as best we can.......Page 71
Active Learning Exercise 15.2: Limiting Reactant Stoichiometry I......Page 73
Active Recitation......Page 75
Active Laboratory......Page 76
References......Page 78
Introduction......Page 82
Participants......Page 84
Description of Course and Teaching Methods......Page 85
Survey......Page 86
Grades......Page 87
Figure 2. Exam and course averages and standard deviations of spring semesters as course transitioned from partial flip to complete flip.......Page 88
Figure 4. Percentage of students in partial and complete flipped classrooms indicating how the classroom influenced their learning of chemistry.......Page 89
Figure 6. Students’ confidence in content understanding after watching the video and then after practicing in class.......Page 90
Discussion......Page 94
Conclusion......Page 95
References......Page 96
Student Profile......Page 100
Chemistry Transformation Team......Page 101
The Project Plan and Workflow......Page 102
In-Class Active Learning......Page 104
Learning Assistant Program......Page 106
Outside of Class Digital Assets......Page 108
Figure 3. (a) Home page of gchem site, which houses all the digital assets for the two-semester course. (b) Inset: representative landing page for the Gas chapter, showing learning outcomes to help guide students’ learning. (c) Inset: subsection of the gas chapter highlighting the high production value instructional videos.......Page 109
Formative and Summative Assessments......Page 110
Figure 4. (a) Topic Modules within the Canvas course. (b) Inset: representative assignments within Module 5. (c) Inset: representative Learning Exercise (LE18) within Module 5.......Page 111
Program Assessment......Page 112
Challenges and Lessons Learned......Page 113
Summary......Page 115
Appendix......Page 116
Figure A1. Example of first page of an activity designed to allow the students discover how nonideal behavior gases causes the measured properties to disobey the ideal gas law. Then, the students discover the correction term for “b” for the nonideal behavior. We do this activity before we introduce the Vander Waals equation.......Page 117
Figure A2. This figure is the first page from an activity from the Atomic and Bonding Unit. The purpose of this activity to help the students discover that Lewis structures can be helpful in sorting out the bonding within a molecule, but that the process of drawing Lewis structures is like working a puzzle and might take some trial and error.......Page 118
Figure A3. This is the second page of an activity from the IMF unit. The first page has a list of hydrocarbons for which the students must draw Lewis structures so they can then infer structure and compare structural features to the boiling points to determine a trend. They continue using that newly constructed knowledge on this page 2, so interpret the hydride data.......Page 119
Figure A4. This the first page of the change in entropy activity. In this activity students are applying what they have learned about thermodynamic state functions and absolute entropy to sorting out the total change in entropy for a physical and then a chemical change.......Page 120
Figure A5. This is the first page of an activity that introduces the students to the thermodynamics of the dissolution process.......Page 121
Figure A6. This the first page of an acid-base activity. Here the students are asked to study various structures to identify the acidic and basic protons.......Page 122
Figure A7. This the first page of an activity introducing 1st order kinetics. We do this activity before we do the kinetics modules as an interesting way to introduce kinetics using some that they have already heard of – radioactive decay and half-life.......Page 123
References......Page 124
Large-Scale, Team-Based Curriculum Transformation and Student Engagement in General Chemistry I and II......Page 126
Introduction......Page 127
Chemistry Department Motivations......Page 128
Figure 1. General Chemistry I curriculum transformation timeline.......Page 129
Figure 2. Example weekly schedule with whole class meetings (150 min), discussion sections (100 min) and laboratory sessions (up to 180 min). The blended format of the class means that students work online individually outside of class, and they work more collaboratively during in-person meetings.......Page 130
New Materials to Support the Transformed Curriculum......Page 132
Figure 3. Icons used in whole-class and discussion section materials to communicate intended level of difficulty and approximate time of implementation.......Page 134
Figure 4. Types of student engagement employed during Whole-Class Meeting. See Figure 3 for explanation of icons. Notice that the classroom is dynamic and rich in problem-solving opportunities.......Page 135
Figure 5. The Canvas learning management system provides a student and instructor content hub.......Page 137
Figure 6. Self-reported student perceptions of work-time allocation. Survey results for how students allocated their time to complete work required for General Chemistry I (n=2324 students). Error bars indicate standard deviation.......Page 139
Ongoing Work and Future Implications......Page 142
References......Page 144
Introduction......Page 148
Background and Course Design Rationale......Page 149
Figure 1. Foundational elements of hybrid course model.......Page 150
Pre-semester Activities......Page 152
Figure 3. Week-by-week outline provided in syllabus.......Page 153
Figure 4. Resources provided in learning management system. (Adapted with permission from Blackboard Inc. 2019 Blackboard Inc.)......Page 154
Figure 5. Learning management system organization. (Adapted with permission from Blackboard Inc. 2019 Blackboard Inc.)......Page 155
Figure 6. Example of lecture video and in-lecture formative assessment.......Page 156
In-Class Activities......Page 157
Student Feedback and Performance......Page 158
Summary......Page 160
References......Page 161
Introduction and Context......Page 166
Transformed Course Design and Context......Page 168
Overall Course Delivery......Page 169
The Course Workbook......Page 170
Course Notes......Page 171
Figure 1. Sample notes page from the CHEM 154 workbook. Each page in the course notes contains 3 power point slides, stacked vertically, with room to the right for any student annotations. Reproduced with permission from reference 9. Copyright 2018 Jose Rodriguez Nunez and Chris Addison.......Page 172
Figure 2. Sample Worksheet page from the CHEM 154 Workbook. Each page contains space for students to fill in their name and student number. Reproduced with permission from reference 9. Copyright 2018 Jose Rodriguez Nunez and Chris Addison.......Page 173
Blueprint Questions......Page 174
Inquiry and Application-Based Demonstrations......Page 175
Figure 3. Sample worksheet question showing suite of demonstrations involving a Ag+ concentration cell. Reproduced with permission from reference 9. Copyright 2018 Jose Rodriguez Nunez and Chris Addison.......Page 176
Figure 4. Summary of results for course-specific end-of-term survey completed by CHEM 154 students. Students were asked to respond to the prompts using a 10-point Likert scale, ranging from Strongly Disagree (0) to Strongly Agree (10). Responses were collapsed into bins of: 0-3, 4-6, and 7-10. Each bin is presented as a percent of the total responses (N = 319). The interpolated median (IM) for each prompt is shown on the corresponding bar.......Page 177
Lessons Learned and Suggestions for Others......Page 180
References......Page 181
Introduction......Page 184
Figure 1. Number of science education research literature citations containing the search items “flipped classroom” or “blended learning”; citation search carried out using the Web of Science database.......Page 185
Course Structure and Flipped Module Design......Page 186
Figure 2. General structure of flipped classroom modules implemented in the CHEM 001 general chemistry course sequence.......Page 189
Statistical Analysis of Student Performance in CHEM 008A......Page 190
Full General Chemistry Population......Page 191
Lower One-Third of Academically Prepared Students......Page 195
Discussion......Page 199
References......Page 201
Liana Lamont......Page 204
Jaclyn J. Stewart......Page 205
Indexes......Page 206
Author Index......Page 208
G......Page 210
I......Page 211
S......Page 212