دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Zlata Jelacic, Remzo Dedic, Haris Dindo سری: ISBN (شابک) : 0128186836, 9780128186831 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 286 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پروتز فعال بالای زانو: راهنمای یک پای مصنوعی هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پروتز فعال بالای زانو: راهنمای یک پای مصنوعی هوشمند نتایج تحقیق و توسعه اصلی را ارائه میکند و یک نمای کلی از تولید ایده و تولید نمونه اولیه ارائه میدهد. این کتاب بینش هایی را در مورد مشکل بالا رفتن از پله برای افراد مبتلا به قطع عضو بالای زانو ارائه می دهد و راه حلی را در قالب یک نمونه فیزیکی از پروتز فعال بالای زانو با مچ پا فعال ارائه می دهد. نویسندگان این کتاب یک نمونه اولیه فیزیکی از یک پروتز فعال بالای زانو را توسعه داده و آزمایش کردهاند، و به هر کسی که در حال تحقیق و طراحی دستگاههای مصنوعی است، اطلاعات دست اولی در مورد چگونگی ساخت و ادامه کارهایی که قبلاً انجام شده است، میدهد.
Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg presents original research and development results, providing a firsthand overview of idea generation and prototype production. The book gives insights into the problem of stair ascent for people with above-knee amputation and offers a solution in the form of a physical prototype of an active above-knee prosthesis with an actuated ankle. The book's authors have developed and tested a physical prototype of an active above-knee prosthesis, giving anyone who is researching and designing prosthetic devices firsthand knowledge on how to build on, and continue with, work that has already been done.
Cover Title Active Above-Knee Prosthesis Copyright_2020_Active-Above-Knee-Prosthesis Copyright Dedication_2020_Active-Above-Knee-Prosthesis Dedication Contents_2020_Active-Above-Knee-Prosthesis Contents Acknowledgment_2020_Active-Above-Knee-Prosthesis Acknowledgment 1 1 The challenges of prosthetic design and control 1.1 The problem of robot–environment interaction 1.1.1 Control of contact tasks 1.1.2 Cooperative manipulation 1.1.3 The interaction problem in rehabilitation 1.2 The effect of motor redundancy on cooperative interactions 1.3 Overview of the current situation in rehabilitation robotics 1.3.1 Target population and rehabilitation robots 1.3.2 Trends in the development of rehabilitation robots 1.4 Impact of amputation on the kinetic chain and proprioception References 2 2 Human motor system 2.1 Human motor control 2.2 Motor redundancy and optimization 2.3 Adaptability of the human motor system 2.4 Motor memory and learning 2.5 Postural control 2.5.1 Vertical posture 2.5.2 Postural sway 2.5.3 Vision and postural control 2.6 Biomechanical analysis of movement 2.6.1 Human movement transition from sitting to climbing 2.6.1.1 Sitting phase 2.6.1.2 Rising phase 2.6.1.3 Standing position 2.6.1.4 Walking 2.6.1.5 Walking up stairs 2.6.1.5.1 Phase I – Lifting the left foot Left side Right side 2.6.1.5.2 Phase II – Start and continuation of the controlled lowering of the leg (Fig. 2.18; muscles that support the incl... Left side Right side 2.6.1.5.3 Phase III – Termination of the controlled lowering of the leg and start of the offset (Fig. 2.18; muscles that st... Left side Right side 2.6.1.5.4 Phase IV – Climbing on the next step (Fig. 2.18) Left side Right side 2.6.1.6 Walking down stairs 2.6.2 Kinematic analysis of the above-knee prosthetic device 2.6.2.1 Analysis of the kinematics of the above-knee prosthesis bending phase 2.6.2.2 Equations of motion 2.6.3 Simulation of climbing various types of stairs 2.6.3.1 Prototype of the above-knee prosthesis 2.6.3.2 Types of staircases 2.6.3.3 Simulation of a disabled person climbing stairs 2.6.4 Conclusion 2.6.5 Simulation of hand force impact on the moment in the knee while climbing References 3 3 Hydraulic power and control system 3.1 Parameter definition and design of the hydraulic linear actuator for mechanization of the above-knee prosthesis 3.1.1 General 3.1.2 Anthropological measures of the human population 3.1.3 Calculating the mass of the human body segments 3.1.4 Determination of the knee and ankle joint coordinates for the assumed starting position (maximum momentum, i.e. force) 3.1.5 Calculating actuator torques in the joints of the locomotor system as well as the total moment in the knee joint when... 3.1.6 Determination of force, pressure and flow in a linear actuator 3.1.6.1 Determining the force in the linear actuator 3.1.6.2 Determining the necessary pressure 3.1.6.3 Determination of the flow in the linear actuator 3.2 Defining the constructive concept of a linear actuator 3.3 Defining the global hydraulic system for linear actuators 3.3.1 Hydraulic knee and ankle actuators 3.3.2 Calculation of fluid flow through the system 3.3.3 Selecting a hydraulic generator 3.3.4 Selecting the reservoir for the hydraulic unit 3.4 Power supply selection for hydraulic power unit 3.5 Hydraulic control of an intelligent active robotic prosthesis 3.5.1 Hydraulic control system 3.5.2 Learning and decision-making system 3.6 Designing a mobile hydraulic power unit 3.6.1 Introduction 3.6.2 Previous research 3.6.3 Optimization of hydraulic installation 3.6.4 Designing 3.6.5 Optimization results 3.7 Conclusions References 4 4 Prosthetic modelling and simulation 4.1 General procedure for simulations 4.2 Modelling biologically inspired systems 4.2.1 Control theory 4.2.2 Control models 4.3 Analytical model of the above-knee prosthesis 4.3.1 Kinematic pairs and chains 4.3.2 Kinematic analysis of mechanisms 4.3.3 Prosthetic knee mechanism 4.3.4 Kinematics of the above-knee prosthetic leg mechanism 4.3.4.1 Graphic path determination 4.3.4.2 Graphic determination of speeds 4.3.4.3 Graphical determination of acceleration 4.4 Model of hydraulic actuator for knee and ankle joints 4.4.1 Bond graph of the hydraulic drive 4.4.2 Linear equations of a hydraulic cylinder 4.5 Modelling of the DC engine 4.6 Robotic manipulator control techniques 4.7 Robust control theory based on the passivity principle 4.7.1 Robust control principle 4.7.2 Robust passivity-based controller for a two-link planar manipulator 4.7.3 Robust passivity-based controller for an active above-knee prosthesis 4.8 Simulation results of the dynamic model and controller 4.8.1 Robust passivity-based control for a two-link planar manipulator 4.8.2 Robust passivity-based control for an active above-knee prosthesis 4.9 Conclusion References 5 5 Prosthetic design and prototype development 5.1 Introduction 5.2 Research background 5.3 SmartLeg overview 5.4 Artificial foot 5.4.1 Concept and prosthetic foot design 5.4.2 Design of the prosthetic foot link 5.4.3 Prosthetic adapter 5.4.4 Adjustment of the current foot design for the adapter link 5.4.5 Modular foot feature of the hydraulic above-knee prosthesis 5.4.6 Integration of adapter and prosthetic foot 5.5 Prototype development 5.5.1 Hydraulic system 5.5.2 Designing the linear actuator 5.5.3 Design of the prosthetic ankle joint 5.5.4 Stress analysis of the prosthetic foot and pylon 5.5.5 Development of the hydraulic prosthetic leg 5.6 Experimental investigation into the kinematics of the above-knee prosthesis 5.6.1 Loads in prostheses 5.6.2 Functional design of the hydraulic cylinder in the ankle joint 5.6.3 The experimental validation 5.7 Motion analysis and finite element analysis 5.7.1 Introduction 5.7.2 Conceptual design of the prosthetic foot 5.7.3 Model of the prosthetic leg 5.7.4 Analysis using SolidWorks 2006 5.7.5 Conclusion 5.8 Foot pressure research 5.8.1 Introduction 5.8.2 Experimental setup 5.8.2.1 Subjects and measurement procedure 5.8.2.2 Measurement equipment 5.8.3 Analysis of the results 5.8.4 Conclusion References 6 6 Dynamics-based action recognition for motor intention prediction 6.1 Introduction 6.2 Related work 6.3 Wearable motion capture system 6.4 Machine learning 6.4.1 k-Nearest neighbors 6.4.2 Support vector machines 6.5 Action representation 6.5.1 Linear time-invariant systems for action representation 6.6 Experimental results 6.6.1 Data collection and annotation 6.6.2 Action classification 6.6.2.1 Using all the angles (A, E, R): results 6.6.2.2 Using the elevation angles (E): results 6.6.2.3 Using the raw data: results 6.6.3 Action detection 6.6.3.1 Walking versus Stair Ascent 6.6.3.2 Walking versus kicking 6.6.3.3 Action detection in the wild: qualitative results 6.6.4 Lessons learned 6.7 Conclusions Acknowledgements References 7 7 Experimental validation of the prosthetic leg 7.1 Problem definition 7.2 Adaptive changes in motor patterns 7.3 Amputation 7.4 Testing of the hydraulic actuator 7.4.1 Hydraulic actuator test device 7.4.2 Hydraulic actuator testing 7.4.3 Experimental testing of the hydraulic actuator in real working conditions 7.5 Measurements on subjects with and without amputation 7.5.1 Patient profile 7.5.1.1 Healthy subjects 7.5.1.2 Subject with the above-knee amputation 7.5.2 Experimental setup 7.5.3 Measurement results 7.6 Testing the first prototype with actuated knee and ankle joints 7.6.1 Measuring volume of the device 7.6.2 Conducting an experiment 7.6.2.1 Experiment preparation 7.6.2.2 Stand preparation 7.6.2.3 Preparation of the prosthesis 7.6.2.4 Experimental testing 7.6.2.5 Stair climbing simulation 7.6.2.6 Simulation of getting up from a chair 7.6.2.7 New type of prosthesis 7.6.2.8 Experimental testing of a new type of prosthesis 7.6.3 Final considerations 7.6.3.1 Intelligent prosthesis 7.7 Prototype with actuated knee and ankle joints 7.7.1 Measurement equipment 7.7.1.1 ZEBRIS 7.7.1.2 iNEMO 7.7.1.3 TrakSTAR 7.7.2 Defining the test and organization of measurements 7.7.2.1 Movement analysis of subjects without amputations 7.7.2.2 Movement analysis of subjects with above-knee amputations 7.7.2.3 Control tests with trakSTAR measuring equipment 7.7.2.4 Measurement errors 7.7.3 Organization of the experiment 7.7.3.1 Experimental staircase 7.7.3.2 Mounting the iNEMO sensor on subjects without amputations and on the above-knee prosthesis 7.7.3.3 Installation of ZEBRIS measuring equipment 7.7.3.4 Preparation of the above-knee prosthesis and prosthetic foot for experimental testing 7.7.3.5 Preparing the test room 7.7.3.6 Selecting labels and naming measurements 7.7.3.7 Processing of measurement results References App Appendix Index Index Back Cover