ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg

دانلود کتاب پروتز فعال بالای زانو: راهنمای یک پای مصنوعی هوشمند

Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg

مشخصات کتاب

Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128186836, 9780128186831 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 286 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 26 مگابایت 

قیمت کتاب (تومان) : 36,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پروتز فعال بالای زانو: راهنمای یک پای مصنوعی هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پروتز فعال بالای زانو: راهنمای یک پای مصنوعی هوشمند



پروتز فعال بالای زانو: راهنمای یک پای مصنوعی هوشمند نتایج تحقیق و توسعه اصلی را ارائه می‌کند و یک نمای کلی از تولید ایده و تولید نمونه اولیه ارائه می‌دهد. این کتاب بینش هایی را در مورد مشکل بالا رفتن از پله برای افراد مبتلا به قطع عضو بالای زانو ارائه می دهد و راه حلی را در قالب یک نمونه فیزیکی از پروتز فعال بالای زانو با مچ پا فعال ارائه می دهد. نویسندگان این کتاب یک نمونه اولیه فیزیکی از یک پروتز فعال بالای زانو را توسعه داده و آزمایش کرده‌اند، و به هر کسی که در حال تحقیق و طراحی دستگاه‌های مصنوعی است، اطلاعات دست اولی در مورد چگونگی ساخت و ادامه کارهایی که قبلاً انجام شده است، می‌دهد.


توضیحاتی درمورد کتاب به خارجی

Active Above-Knee Prosthesis: A Guide to a Smart Prosthetic Leg presents original research and development results, providing a firsthand overview of idea generation and prototype production. The book gives insights into the problem of stair ascent for people with above-knee amputation and offers a solution in the form of a physical prototype of an active above-knee prosthesis with an actuated ankle. The book's authors have developed and tested a physical prototype of an active above-knee prosthesis, giving anyone who is researching and designing prosthetic devices firsthand knowledge on how to build on, and continue with, work that has already been done.



فهرست مطالب

Cover
Title
	Active Above-Knee Prosthesis
Copyright_2020_Active-Above-Knee-Prosthesis
	Copyright
Dedication_2020_Active-Above-Knee-Prosthesis
	Dedication
Contents_2020_Active-Above-Knee-Prosthesis
	Contents
Acknowledgment_2020_Active-Above-Knee-Prosthesis
	Acknowledgment
1
	1 The challenges of prosthetic design and control
		1.1 The problem of robot–environment interaction
			1.1.1 Control of contact tasks
			1.1.2 Cooperative manipulation
			1.1.3 The interaction problem in rehabilitation
		1.2 The effect of motor redundancy on cooperative interactions
		1.3 Overview of the current situation in rehabilitation robotics
			1.3.1 Target population and rehabilitation robots
			1.3.2 Trends in the development of rehabilitation robots
		1.4 Impact of amputation on the kinetic chain and proprioception
		References
2
	2 Human motor system
		2.1 Human motor control
		2.2 Motor redundancy and optimization
		2.3 Adaptability of the human motor system
		2.4 Motor memory and learning
		2.5 Postural control
			2.5.1 Vertical posture
			2.5.2 Postural sway
			2.5.3 Vision and postural control
		2.6 Biomechanical analysis of movement
			2.6.1 Human movement transition from sitting to climbing
				2.6.1.1 Sitting phase
				2.6.1.2 Rising phase
				2.6.1.3 Standing position
				2.6.1.4 Walking
				2.6.1.5 Walking up stairs
					2.6.1.5.1 Phase I – Lifting the left foot
						Left side
						Right side
					2.6.1.5.2 Phase II – Start and continuation of the controlled lowering of the leg (Fig. 2.18; muscles that support the incl...
						Left side
						Right side
					2.6.1.5.3 Phase III – Termination of the controlled lowering of the leg and start of the offset (Fig. 2.18; muscles that st...
						Left side
						Right side
					2.6.1.5.4 Phase IV – Climbing on the next step (Fig. 2.18)
						Left side
						Right side
				2.6.1.6 Walking down stairs
			2.6.2 Kinematic analysis of the above-knee prosthetic device
				2.6.2.1 Analysis of the kinematics of the above-knee prosthesis bending phase
				2.6.2.2 Equations of motion
			2.6.3 Simulation of climbing various types of stairs
				2.6.3.1 Prototype of the above-knee prosthesis
				2.6.3.2 Types of staircases
				2.6.3.3 Simulation of a disabled person climbing stairs
			2.6.4 Conclusion
			2.6.5 Simulation of hand force impact on the moment in the knee while climbing
		References
3
	3 Hydraulic power and control system
		3.1 Parameter definition and design of the hydraulic linear actuator for mechanization of the above-knee prosthesis
			3.1.1 General
			3.1.2 Anthropological measures of the human population
			3.1.3 Calculating the mass of the human body segments
			3.1.4 Determination of the knee and ankle joint coordinates for the assumed starting position (maximum momentum, i.e. force)
			3.1.5 Calculating actuator torques in the joints of the locomotor system as well as the total moment in the knee joint when...
			3.1.6 Determination of force, pressure and flow in a linear actuator
				3.1.6.1 Determining the force in the linear actuator
				3.1.6.2 Determining the necessary pressure
				3.1.6.3 Determination of the flow in the linear actuator
		3.2 Defining the constructive concept of a linear actuator
		3.3 Defining the global hydraulic system for linear actuators
			3.3.1 Hydraulic knee and ankle actuators
			3.3.2 Calculation of fluid flow through the system
			3.3.3 Selecting a hydraulic generator
			3.3.4 Selecting the reservoir for the hydraulic unit
		3.4 Power supply selection for hydraulic power unit
		3.5 Hydraulic control of an intelligent active robotic prosthesis
			3.5.1 Hydraulic control system
			3.5.2 Learning and decision-making system
		3.6 Designing a mobile hydraulic power unit
			3.6.1 Introduction
			3.6.2 Previous research
			3.6.3 Optimization of hydraulic installation
			3.6.4 Designing
			3.6.5 Optimization results
		3.7 Conclusions
		References
4
	4 Prosthetic modelling and simulation
		4.1 General procedure for simulations
		4.2 Modelling biologically inspired systems
			4.2.1 Control theory
			4.2.2 Control models
		4.3 Analytical model of the above-knee prosthesis
			4.3.1 Kinematic pairs and chains
			4.3.2 Kinematic analysis of mechanisms
			4.3.3 Prosthetic knee mechanism
			4.3.4 Kinematics of the above-knee prosthetic leg mechanism
				4.3.4.1 Graphic path determination
				4.3.4.2 Graphic determination of speeds
				4.3.4.3 Graphical determination of acceleration
		4.4 Model of hydraulic actuator for knee and ankle joints
			4.4.1 Bond graph of the hydraulic drive
			4.4.2 Linear equations of a hydraulic cylinder
		4.5 Modelling of the DC engine
		4.6 Robotic manipulator control techniques
		4.7 Robust control theory based on the passivity principle
			4.7.1 Robust control principle
			4.7.2 Robust passivity-based controller for a two-link planar manipulator
			4.7.3 Robust passivity-based controller for an active above-knee prosthesis
		4.8 Simulation results of the dynamic model and controller
			4.8.1 Robust passivity-based control for a two-link planar manipulator
			4.8.2 Robust passivity-based control for an active above-knee prosthesis
		4.9 Conclusion
		References
5
	5 Prosthetic design and prototype development
		5.1 Introduction
		5.2 Research background
		5.3 SmartLeg overview
		5.4 Artificial foot
			5.4.1 Concept and prosthetic foot design
			5.4.2 Design of the prosthetic foot link
			5.4.3 Prosthetic adapter
			5.4.4 Adjustment of the current foot design for the adapter link
			5.4.5 Modular foot feature of the hydraulic above-knee prosthesis
			5.4.6 Integration of adapter and prosthetic foot
		5.5 Prototype development
			5.5.1 Hydraulic system
			5.5.2 Designing the linear actuator
			5.5.3 Design of the prosthetic ankle joint
			5.5.4 Stress analysis of the prosthetic foot and pylon
			5.5.5 Development of the hydraulic prosthetic leg
		5.6 Experimental investigation into the kinematics of the above-knee prosthesis
			5.6.1 Loads in prostheses
			5.6.2 Functional design of the hydraulic cylinder in the ankle joint
			5.6.3 The experimental validation
		5.7 Motion analysis and finite element analysis
			5.7.1 Introduction
			5.7.2 Conceptual design of the prosthetic foot
			5.7.3 Model of the prosthetic leg
			5.7.4 Analysis using SolidWorks 2006
			5.7.5 Conclusion
		5.8 Foot pressure research
			5.8.1 Introduction
			5.8.2 Experimental setup
				5.8.2.1 Subjects and measurement procedure
				5.8.2.2 Measurement equipment
			5.8.3 Analysis of the results
			5.8.4 Conclusion
		References
6
	6 Dynamics-based action recognition for motor intention prediction
		6.1 Introduction
		6.2 Related work
		6.3 Wearable motion capture system
		6.4 Machine learning
			6.4.1 k-Nearest neighbors
			6.4.2 Support vector machines
		6.5 Action representation
			6.5.1 Linear time-invariant systems for action representation
		6.6 Experimental results
			6.6.1 Data collection and annotation
			6.6.2 Action classification
				6.6.2.1 Using all the angles (A, E, R): results
				6.6.2.2 Using the elevation angles (E): results
				6.6.2.3 Using the raw data: results
			6.6.3 Action detection
				6.6.3.1 Walking versus Stair Ascent
				6.6.3.2 Walking versus kicking
				6.6.3.3 Action detection in the wild: qualitative results
			6.6.4 Lessons learned
		6.7 Conclusions
		Acknowledgements
		References
7
	7 Experimental validation of the prosthetic leg
		7.1 Problem definition
		7.2 Adaptive changes in motor patterns
		7.3 Amputation
		7.4 Testing of the hydraulic actuator
			7.4.1 Hydraulic actuator test device
			7.4.2 Hydraulic actuator testing
			7.4.3 Experimental testing of the hydraulic actuator in real working conditions
		7.5 Measurements on subjects with and without amputation
			7.5.1 Patient profile
				7.5.1.1 Healthy subjects
				7.5.1.2 Subject with the above-knee amputation
			7.5.2 Experimental setup
			7.5.3 Measurement results
		7.6 Testing the first prototype with actuated knee and ankle joints
			7.6.1 Measuring volume of the device
			7.6.2 Conducting an experiment
				7.6.2.1 Experiment preparation
				7.6.2.2 Stand preparation
				7.6.2.3 Preparation of the prosthesis
				7.6.2.4 Experimental testing
				7.6.2.5 Stair climbing simulation
				7.6.2.6 Simulation of getting up from a chair
				7.6.2.7 New type of prosthesis
				7.6.2.8 Experimental testing of a new type of prosthesis
			7.6.3 Final considerations
				7.6.3.1 Intelligent prosthesis
		7.7 Prototype with actuated knee and ankle joints
			7.7.1 Measurement equipment
				7.7.1.1 ZEBRIS
				7.7.1.2 iNEMO
				7.7.1.3 TrakSTAR
			7.7.2 Defining the test and organization of measurements
				7.7.2.1 Movement analysis of subjects without amputations
				7.7.2.2 Movement analysis of subjects with above-knee amputations
				7.7.2.3 Control tests with trakSTAR measuring equipment
				7.7.2.4 Measurement errors
			7.7.3 Organization of the experiment
				7.7.3.1 Experimental staircase
				7.7.3.2 Mounting the iNEMO sensor on subjects without amputations and on the above-knee prosthesis
				7.7.3.3 Installation of ZEBRIS measuring equipment
				7.7.3.4 Preparation of the above-knee prosthesis and prosthetic foot for experimental testing
				7.7.3.5 Preparing the test room
				7.7.3.6 Selecting labels and naming measurements
				7.7.3.7 Processing of measurement results
		References
App
	Appendix
Index
	Index
Back Cover




نظرات کاربران