دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021]
نویسندگان: Michael Sinapius (editor). Gerhard Ziegmann (editor)
سری:
ISBN (شابک) : 3030685225, 9783030685225
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 493
[479]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Acting Principles of Nano-Scaled Matrix Additives for Composite Structures (Research Topics in Aerospace) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول عملی افزودنی های ماتریس مقیاس نانو برای سازه های مرکب (موضوعات پژوهشی در هوافضا) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تأثیر مواد افزودنی ماتریس در مقیاس نانو را در چهار سطح تشکیل مواد، برهمکنش ذرات-رزین، تأثیر نانوذرات بر فرآیندپذیری پلیمر، تأثیر نانوذرات بر پخت پلیمر و تأثیر نانوذرات بر کامپوزیت الیاف پلاستیکی را بررسی میکند. . پلاستیک های تقویت شده با الیاف در مقایسه با فلزات همسانگرد، پتانسیل ساخت سبک وزن به طور قابل توجهی در اجزای دارای حالت تنش اولیه تک یا دو محوره دارند. در عین حال، عدم حساسیت آنها به خوردگی و خواص خستگی مفید آنها می تواند به کاهش هزینه های نگهداری کمک کند. با توجه به خواص مکانیکی خاص خود، آنها از جمله مصالح ساختمانی سبک وزن با کارایی بالا هستند. این ویژگی ها آنها را به ویژه در زمینه تحرک جذاب می کند. با این حال، به محض اینکه خواص ماتریس بر خواص مکانیکی غالب شود، به عنوان مثال. در مورد استحکام فشاری موازی فیبر، ضعف های قابل توجهی در خواص مکانیکی آشکار می شود. در اینجا، یک رویکرد افزایش قابل توجه خواص ماتریس از طریق افزودنیهای سرامیکی در مقیاس نانو و در عین حال تضمین فرآیندپذیری رزین است.
The book explores the effect of nanoscale matrix additives along the four levels of material formation, particle-resin interaction, the influence of nanoparticles on the processability of the polymer, the influence of nanoparticles on polymer curing and the influence of nanoparticles on the fiber plastic composite. Fiber-reinforced plastics have a significantly higher lightweight construction potential in components with a primary single- or biaxial stress state compared to isotropic metals. At the same time, their insensitivity to corrosion and their advantageous fatigue properties can help to reduce maintenance costs. Due to their outstanding specific mechanical properties, they are among today\'s high-performance lightweight construction materials. These properties make them particularly attractive in the field of mobility. However, as soon as the matrix properties dominate the mechanical properties, e.g. in the case of fibre-parallel compressive strength, significant weaknesses become apparent in the mechanical properties. Here, one approach is to significantly increase the matrix properties through nanoscale ceramic additives and at the same time to guarantee the processability of the resin.
Preface Acknowlegement Contents Part I Introduction 1 Motivation and Relevance References 2 State of Research on Fiber Reinforced Nanocomposites and Theses of This Book 2.1 Literature Review 2.1.1 Interaction Between Nanoparticles and Matrix 2.1.2 Nano- and Micromechanical Models of Nanoparticle-Reinforced Epoxy Resins 2.1.3 Flow Behavior of Nano-Particulate Epoxy Resin Suspensions 2.1.4 Impregnation Process of Nanoparticle-Reinforced Fiber Composite Structures 2.1.5 Failure Behavior of Fiber-Reinforced Nanocomposites 2.1.6 Fiber Reinforced Nanocomposites for Complex Structures 2.2 Theses References Part II Foundation 3 Modeling and Simulation of Nanocomposites and Their Manufacturing Processes 3.1 Modeling and Simulation of Nanocomposite 3.1.1 Molecular Dynamics Simulations 3.1.2 Coarse-Grained Modeling 3.1.3 Multiscale Modeling 3.2 Process Simulation 3.2.1 Fluid Flow in Porous Media 3.2.2 Nanoparticle-Epoxy Flow in Porous Media 3.2.3 Cure Process 3.2.4 Summary References 4 Characterization of Polymer Nanocomposites 4.1 Introduction 4.2 Methods 4.3 Results and Discussion 4.3.1 TGA Measurements 4.3.2 X-ray Scattering 4.3.3 Calorimetry 4.3.4 Broadband Dielectric Spectroscopy 4.4 Conclusions References 5 Liquid Composite Molding Processes 5.1 Introduction 5.2 Functionalization of FRPs with Nanoparticles 5.3 Multi-scale Functional FRPs Fabrication Strategies 5.4 Summary References Part III Particle-Matrix Interaction 6 Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations 6.1 Introduction 6.2 Boehmite 6.2.1 Spray Dried Nanoparticles HP14 6.2.2 Geological Boehmite 6.2.3 Hydrothermally Synthesized Boehmite 6.3 Experimental Characterization of Boehmite 6.3.1 XRD Measurements 6.3.2 Raman Spectroscopy 6.3.3 AFM Measurements 6.3.4 Summary of the Experimental Part 6.4 Numerical Characterization of Boehmite 6.4.1 AFM Simulation Models 6.4.2 Results of Preliminary Simulations 6.4.3 Simulation Results 6.5 Results and Discussion 6.6 Concluding Remarks References 7 Particle Surface Modification 7.1 Introduction to Nanoparticle Surface Modification 7.2 Surface Modification of Filler Particles for Nanocomposites 7.3 Surface Modification of Boehmite 7.3.1 Motivation and General Aspects 7.3.2 APTES Modification of BNP 7.3.3 Two-Step Modification of BNP 7.3.4 Influence of BNP Surface Modification on the Mechanical Properties of Nanocomposite 7.3.5 Alternative Surface Modification Approaches 7.4 Summary and Conclusion References 8 Short- and Long-Range Particle-Matrix Interphases 8.1 Introduction 8.2 AFM-Based Experimental Studies of Boehmite/Epoxy Interphase 8.2.1 Experimental—Materials and Sample Preparation 8.2.2 Results and Discussion 8.3 Numerical Characterization of the Boehmite/Epoxy Interphase 8.3.1 Calculation of the Local Elastic Properties from MD Simulations 8.3.2 Modeling and Simulation Aspects 8.3.3 Results and Discussion 8.4 Conclusion References 9 A Multi-scale Framework for the Prediction of the Elastic Properties of Nanocomposites 9.1 Introduction 9.2 Atomistic Simulation 9.2.1 Anhydride Cured Epoxy 9.2.2 Model Generation 9.2.3 Numerical Investigation of Epoxy 9.3 Coarse-Grained Simulation 9.3.1 Mapping Schemes 9.3.2 Coarse-Grained Force Field 9.3.3 Results and Discussion 9.4 Micro-Scale Simulation 9.4.1 Agglomerate UCs 9.4.2 Agglomerate RVEs 9.5 Conclusions References 10 Multiscale Modeling and Simulation of Polymer Nanocomposites Using Transformation Field Analysis 10.1 Introduction 10.2 Transformation Field Analysis (TFA) 10.2.1 Local Fields 10.2.2 Total Response 10.3 TFA of Inelastic Deformation 10.4 Finite Element-Based Implementation 10.5 Numerical Applications 10.5.1 Single Nano-Scale Model 10.5.2 Results of the Single Nano-Scale Model 10.5.3 Nano-Micro Scale 10.5.4 Extended Nano-Micro (TFA-TFA) Scale Approach 10.5.5 Results of Two Micro-Nano Scale Approaches 10.5.6 Multiscale Modeling of Nanoparticle-Modified Epoxy Tension Specimens Using (TFA) 10.5.7 Results of Multiscale Modeling of Modified Epoxy Tension Specimens 10.6 Conclusions 10.7 Appendix 10.8 Nomenclature References Part IV Influence of Nanoadditives on Composite Manufacturing 11 Dispersion Technology and Its Simulation 11.1 Dispersing Technology for the Production of Nanoparticle Reinforced Composites 11.1.1 Stress Mechanisms and Dispersing Methods 11.1.2 Comparison of Dispersing Methods for the Production of Highly Viscous Nanocomposites 11.2 Simulation of Dispersing Devices and Processes 11.2.1 Simulation of Dispersing Processes in Stirred Media Mills 11.2.2 Simulation of Dispersing Processes in Laminar Shear Flow 11.2.3 Flow Simulation of Dispersing Devices References 12 Cure Kinetics and Rheology 12.1 Introduction 12.2 Theory 12.2.1 Modeling of Curing Kinetics and Its Characterization 12.2.2 Reaction Mechanism and Model Evaluation 12.2.3 Glass Transition Temperature Versus Conversion 12.2.4 Rheology 12.2.5 Estimation of Rheological Model Parameters 12.3 Materials and Methodologies 12.3.1 Cure Characterization 12.3.2 Rheology Characterization 12.4 Cure Characteristics of Particle Reinforced Composites 12.4.1 Cure Characterization via Dynamic DSC 12.4.2 Modeling of Curing Degree 12.5 Rheology Modeling 12.5.1 Rheology Characterization and Semi-experimental Modeling 12.5.2 Mechanistic Modeling of the Suspension Viscosity 12.5.3 Impact of Surface Modification and Particle Size on the Suspension Viscosity 12.6 Summary and Outlook References 13 Thermal Properties of Boehmite-Epoxy Nanocomposites 13.1 Introduction 13.2 Modification of Polymer Matrices by Nanoparticle Incorporation 13.3 Surface Modification of Filler Particles 13.4 Influence of the Curing Degree on the Thermal Conductivity 13.5 Thermal Conductivity Measurement Methods 13.6 Materials and Measurement 13.7 Results 13.7.1 Thermal Conductivity 13.7.2 Heat Capacity 13.8 Conclusion References 14 Molecular Modeling of Epoxy Resin Crosslinking Experimentally Validated by Near-Infrared Spectroscopy 14.1 Introduction 14.2 Near-Infrared Spectroscopy 14.2.1 Material System 14.2.2 Methodology 14.2.3 Experimental NIR Results—Absolute Absorbance 14.2.4 Experimental NIR Results—Normalised Change of Reactive Groups 14.3 Molecular Modeling Method for Crosslinking 14.3.1 Generation of the Unlinked Model 14.3.2 Crosslinking Simulation 14.4 Results and Discussion 14.4.1 Effect of Cut-Off Distance 14.4.2 Experimental Validation Using NIR Measurements 14.4.3 Discussion 14.5 Conclusions References 15 Permeability Characterization and Impregnation Strategies with Nanoparticle-Modified Resin Systems 15.1 Introduction 15.2 Materials and Methodologies 15.2.1 Flow Experiments 15.2.2 Permeability Test 15.3 Experimental Results 15.3.1 Nanoparticle Systems Flow and Retention 15.3.2 Permeability 15.4 Simulation of the Impregnation Length 15.5 Impregnation Strategies for Gradual Functionalization 15.6 Summary References Part V Structural Mechanics of Fiber Reinforced Nanocomposites 16 Nanoscaled Boehmites' Modes of Action in a Polymer and Its Carbon Fiber Reinforced Plastic 16.1 Challenges of Future CFRP 16.2 Resin-Particle Interactions 16.3 Particle–Polymer Interphases 16.4 Selected Properties and the Nanocomposites' Particle-Network 16.5 Conclusion References 17 Viscoelastic Damage Behavior of Fiber Reinforced Nanoparticle-Filled Epoxy Nanocomposites: Multiscale Modeling and Experimental Validation 17.1 Introduction 17.2 Constitutive Modeling of Fiber Reinforced Nanocomposites 17.2.1 Strain Energy for Fiber Reinforced Composites 17.2.2 Viscoelastic Damage Constitutive Model 17.2.3 Summary of the Constitutive Model 17.2.4 Molecular Simulation Based Parameter Identification 17.2.5 Finite Element Analysis 17.2.6 Finite Element Matrices 17.2.7 Results and Discussion 17.2.8 Summary and Conclusions References 18 Effect of Particle-Surface-Modification on the Failure Behavior of Epoxy/Boehmite CFRPs 18.1 Introduction 18.2 Materials and Specimen Preparation 18.3 Characterization of Particle Sizes and Surface Loadings 18.4 Effect of Particle-Surface-Modification on the Processability 18.5 Effect of Particle-Surface-Modification on the Tensile Properties of the 2-Phase-Composites 18.6 Effect of Particle-Surface-Modification on the Fracture Toughness of the 2-Phase-Composites 18.7 Effect of Particle-Surface-Modification on the Mechanical Properties of the 2-Phase-Composites 18.8 Effect of Particle-Surface-Modification on the Compression Strength After Impact of the 3-Phase-Composites 18.9 Summary References 19 Surface Quality of Carbon Fibre Reinforced Nanocomposites: Investigation and Evaluation of Processing Parameters Controlling the Fibre Print-Through Effect 19.1 Introduction 19.2 Materials and Methods 19.2.1 Characterisation and Testing of Epoxy Resins 19.2.2 Preparation of Fibre-Reinforced Composites 19.2.3 Surface Characterisation 19.3 Results and Discussion 19.3.1 Pure Resin Examinations 19.3.2 Laminate Studies 19.4 Conclusions References 20 Upscaling Effects of Carbon Fiber Reinforced Nanocomposites with Respect to Matrix-Induced Distortions and Mechanical Properties 20.1 Introduction 20.2 Materials and Methods 20.2.1 Materials and Dispersion of Nanocomposites 20.2.2 Manufacturing and Testing of L-Angled Brackets 20.2.3 Manufacturing of C-Frames 20.2.4 Four-Point Bending of C-Frames 20.3 Results and Discussion 20.3.1 Particle Distribution in a CFRP Component 20.3.2 Matrix Induced Deformations of L-Brackets 20.3.3 Matrix Induced Deformations of C-Frames 20.3.4 Impact Calibration of C-Frames 20.3.5 Damage Areas 20.3.6 4-Point Bending C-Frames 20.4 Conclusions References Index