دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Satbir Singh Gosal, Shabir Hussain Wani سری: ISBN (شابک) : 3030473058, 9783030473051 ناشر: Springer سال نشر: 2020 تعداد صفحات: 430 [438] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Accelerated Plant Breeding, Volume 3: Food Legumes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصلاح نباتات تسریع شده، جلد 3: حبوبات غذایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهبود گیاه تمرکز خود را از عملکرد، کیفیت و مقاومت در برابر بیماری به عواملی که صادرات تجاری را افزایش میدهند، مانند بلوغ زودرس، ماندگاری و کیفیت پردازش بهتر تغییر داده است. روش های مرسوم اصلاح نباتات با هدف بهبود یک محصول خود گرده افشانی مانند گندم، معمولاً 10-12 سال طول می کشد تا رشد و رهاسازی گونه جدید انجام شود. در طول 10 سال گذشته، پیشرفتهای قابل توجهی صورت گرفته و روشهای سریعتری برای اصلاح دقیق و رهاسازی زودهنگام واریتههای زراعی توسعه یافته است. بنابراین، کار حجمی پیشنهادی قصد دارد مفاهیم مربوط به افزایش ژرم پلاسم و توسعه واریتههای بهبودیافته را بر اساس روشهای نوآورانه که شامل هاپلوئیدی مضاعف، انتخاب به کمک نشانگر، انتخاب پسزمینه به کمک نشانگر، نقشهبرداری ژنتیکی، انتخاب ژنومی، ژنوتیپسازی با توان عملیاتی بالا، عملکرد بالا، خلاصه شود. فنوتیپینگ، اصلاح جهش، اصلاح معکوس، اصلاح تراریخته، اصلاح شاتل، اصلاح سریع، فنوتیپ با توان کم هزینه بالا و غیره. این یک مرجع مهم با تمرکز ویژه بر توسعه سریع واریته های زراعی بهبود یافته خواهد بود.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. The proposed volume work thus plans to summarize concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It will be an important reference with special focus on accelerated development of improved crop varieties.
Foreword Preface Contents About the Editors Chapter 1: Efficient Breeding of Pulse Crops 1.1 Introduction 1.2 Production Trends 1.3 Overview of Past Breeding Efforts 1.3.1 Genetic Resources 1.3.2 Variety Development 1.3.3 Breeding Progress 1.4 Accelerating Breeding Efficiency in Pulses 1.4.1 Defining the Target Population of Environments (TPE) 1.4.2 High-Throughput Phenotyping 1.4.3 Simulation Models for Appropriate Breeding Scheme 1.4.4 Enhancing Genetic Variability 1.4.5 Selection Indices 1.4.6 Indirect Selection 1.4.7 Marker-Assisted Selection 1.4.8 Genomic Selection 1.4.9 Rapid Generation Advancement 1.4.10 Recombinant DNA Technology 1.4.11 Genome Editing Technologies 1.4.12 Experimental Design 1.5 Conclusions References Chapter 2: Advances in Chickpea Breeding and Genomics for Varietal Development and Trait Improvement in India 2.1 Introduction 2.2 Germplasm and Genetic Resources 2.3 Varietal Development 2.4 Major Constraints 2.4.1 Biotic Stresses 2.4.1.1 Fusarium Wilt 2.4.1.2 Ascochyta Blight 2.4.1.3 Botrytis Grey Mould 2.4.1.4 Pod Borer 2.4.1.5 Bruchids 2.4.1.6 Weeds 2.4.2 Abiotic Stresses 2.4.2.1 Drought 2.4.2.2 Heat Stress 2.4.2.3 Cold Stress 2.5 Genomic and Transcriptomic Resources 2.6 Linkage Maps, Physical Maps and Functional Maps 2.7 Trait Mapping for Various Biotic and Abiotic Stress Tolerance and Yield-Related Traits 2.8 Genomics-Assisted Breeding (GAB) for Trait Improvement 2.9 Rapid Generation Advancement/Speed Breeding 2.10 Future Research Priorities 2.10.1 Germplasm Characterization 2.10.2 Trait Identification and Germplasm Enhancement 2.10.3 Regaining Chickpea Area in Northern India 2.10.4 Varieties for Vegetable Purpose 2.10.5 Kabuli Chickpea Varieties for Export and Domestic Consumption 2.10.6 Machine-Harvestable Chickpea for Reducing Cost of Cultivation 2.10.7 Herbicide-Tolerant Varieties 2.10.8 Varieties with Better Nutrient Acquisition Efficiency 2.10.9 Nutritionally Rich Varieties 2.10.10 Integrated Breeding References Chapter 3: Conventional and Biotechnological Approaches for Targeted Trait Improvement in Lentil 3.1 Introduction 3.2 Pre-breeding for Targeted Trait Improvement in Lentil 3.3 Important Traits of Interest for Breeding Strategy 3.4 Conventional Breeding Approaches for Targeted Trait Improvement in Lentil 3.5 Biotechnological Approaches 3.5.1 Tissue Culture for Targeted Trait Improvement in Lentil 3.5.2 Embryo Rescue Assisted Breeding 3.5.3 Transgenic Approaches for Targeted Trait Improvement 3.5.4 High-Throughput Sequencing for Targeted Trait Improvement in Lentil 3.5.5 Transcriptomics for Targeted Trait Improvement in Lentil 3.5.6 Linkage Mapping and QTLs for Targeted Trait Improvement in Lentil 3.5.6.1 Linkage Mapping from Single Mapping Populations 3.5.6.2 Linkage Mapping from Multiple Mapping Populations (Consensus Maps) 3.6 Conclusion References Chapter 4: Updates of Pigeonpea Breeding and Genomics for Yield Improvement in India 4.1 Introduction 4.2 Pigeonpea Breeding and Improvement: A Retrospect 4.2.1 Breeding Methods Followed for Pigeonpea Improvement 4.2.1.1 Mutation Breeding 4.2.1.2 Varietal Improvement Through Selection 4.2.1.3 Varietal Improvement Through Hybridization 4.2.1.4 Pigeonpea Improvement Through Heterosis Breeding 4.3 Constraints for Yield Improvement 4.3.1 Lack of Genetic Diversity 4.3.2 Photoperiod Sensitivity 4.3.3 Linkage with Undesirable Traits 4.3.4 The Issue of Yield Plateau 4.3.5 Harvest Index 4.3.6 Genetic Control of Stresses 4.3.7 Genetic Contamination of Seed Purity 4.4 Genetic Resources Available 4.4.1 Genetic Information 4.4.2 Screening Technologies for Key Stresses 4.4.3 Cytoplasmic Nuclear Male Sterility Systems 4.4.4 Natural Cross-Pollination 4.5 Approaches and Accomplishments of Pigeonpea Breeding 4.5.1 Hybrid Breeding 4.5.2 Breeding for Biotic Stresses 4.5.2.1 Fusarium Wilt 4.5.2.2 Sterility Mosaic Disease 4.5.2.3 Phytophthora Stem Blight Resistance 4.5.2.4 Pod Borers 4.5.3 Breeding Strategies to Combat Abiotic Stresses 4.5.3.1 Drought Tolerance 4.5.3.2 Waterlogging 4.5.3.3 Salinity 4.5.3.4 Temperature 4.5.4 Breeding for High Protein Content 4.5.5 Speed Breeding 4.6 Genomics and Molecular Breeding in Pigeonpea 4.7 Conclusion References Chapter 5: Genomics-Assisted Breeding Green Gram (Vigna radiata (L.) Wilczek) for Accelerating Genetic Gain 5.1 Introduction 5.2 Origin, Domestication, and Distribution 5.3 Botany 5.4 Production and Productivity 5.5 Production Constraints 5.6 Genetic Resources 5.7 Genetic Enhancement 5.7.1 Conventional Breeding 5.7.2 Genome Sequence of Green Gram Obtained Through EST-SSR Markers 5.7.3 Genomics-Assisted Breeding 5.7.4 Genome-Wide Association Mapping 5.7.5 Transgenic Technology 5.8 Future Prospects References Chapter 6: Breeding for High-Yielding and Disease-Resistant Urdbean Cultivars 6.1 Introduction 6.2 Major Producing Regions 6.2.1 The World 6.2.2 India 6.3 Centers of Origin 6.4 Crop Systematics 6.5 Species Relationship 6.6 Plant Morphology and Floral Biology 6.7 Trait Inheritance 6.8 Genetics of Disease-Pest Resistance 6.9 Breeding Objectives 6.10 Breeding Methods 6.10.1 Mutation 6.10.2 Intraspecific and Interspecific Hybridization 6.10.3 Use of “Omic” Technologies in Urdbean Breeding 6.10.3.1 Tissue Culture and Genetic Transformation 6.10.3.2 Development of Molecular Markers 6.10.3.3 Use of Molecular Markers 6.11 Outlook 6.12 Major Crop Improvement Research Stations References Chapter 7: Lentil Breeding in Genomic Era: Present Status and Future Prospects 7.1 Introduction 7.2 Genomic Resources 7.2.1 Molecular Markers 7.2.1.1 Hybridization-Based Molecular Markers 7.2.1.2 PCR-Based Molecular Markers 7.2.1.3 Sequencing-Based Markers 7.2.2 Lentil Genome Sequence 7.2.3 Mapping Populations and Linkage Maps 7.2.4 Transcriptome Analysis for Identification of Candidate Genes 7.2.5 Comparative Genome Analysis 7.3 Transgenic Development 7.4 Future Prospects of Lentil Breeding in Current Genomics Era References Chapter 8: Chickpea Breeding for Abiotic Stress: Breeding Tools and ‘Omics’ Approaches for Enhancing Genetic Gain 8.1 Introduction 8.2 Drought Stress 8.2.1 Genetic Sources and Advanced Breeding Strategies Combating Drought Stress 8.3 Effects of Heat Stress 8.3.1 Genetic Sources and Progress of Heat Tolerance in Chickpea 8.4 Salinity Stress 8.4.1 Genetic Sources for Salinity Tolerance in Chickpea 8.5 Impact of Cold Stress in Chickpea 8.5.1 Genetic Resources for Cold Tolerance 8.6 Physiological Trait Breeding and High-Throughput Phenotyping for Abiotic Stress Tolerance 8.6.1 Conventional Breeding Efforts for Developing Abiotic Stress-Tolerant Chickpea 8.6.2 Genomic Resources and QTL Mapping for Drought Stress Tolerance 8.6.3 QTLs Contributing to Heat and Cold Stress Tolerance 8.6.4 Genomic Resources for Elucidating Salinity Stress in Chickpea 8.6.5 Advances in Functional Genomics for Underpinning Various Abiotic Stress-Responsive Candidate Genes 8.6.6 Scope of Sequencing and Re-sequencing Efforts for Investigating Abiotic Stress Tolerance-Related Haplotype Assembly 8.6.7 Progress and Hope of Novel Breeding Technologies for Designing Abiotic Stress-Tolerant Chickpea 8.6.8 High-Throughput Phenotyping (HTP) for Increasing Genetic Gain Under Abiotic Stresses 8.7 Conclusion and Perspective References Chapter 9: Recent Advances in Mungbean Breeding: A Perspective 9.1 Introduction 9.2 Production Constraints in Mungbean 9.2.1 Biotic Stress 9.2.2 Abiotic Stress 9.2.2.1 Drought Stress 9.2.2.2 Water Logging Stress 9.2.2.3 Temperature Stress 9.2.2.4 Salinity Stress 9.2.2.5 Pre-harvest Sprouting 9.3 Crop Improvement Strategy 9.3.1 Germplasm Resources 9.3.2 Breeding Goals 9.4 Breeding Procedures 9.4.1 Breeding for Resistance to Biotic Stresses 9.4.1.1 Breeding for Resistance to Diseases Breeding for Resistance to Viral Diseases Breeding for Resistance to Fungal Diseases Powdery Mildew Anthracnose: Colletotrichum lindemuthianum (Sexual Stage – Glomerella lindemuthianum) Breeding for Resistance to Bacterial Diseases Leaf Spot: Cercospora canescens 9.4.1.2 Breeding for Resistance to Insects Breeding for Bruchid Resistance 9.5 Recent Advances in Mungbean Breeding 9.5.1 Use of Biotechnological Tools to Complement Conventional Breeding 9.5.2 Genomic Resources 9.5.2.1 Development and Use of Markers 9.5.2.2 Bacterial Artificial Chromosome (BAC) 9.5.2.3 EST-SSRs 9.5.2.4 Intron Length Polymorphism (ILP) 9.5.2.5 RNAi Technology 9.5.2.6 Application of Plant Phenomics 9.5.2.7 Genomic Survey Sequences (GSS) in Green Gram 9.6 Future Breeding Emphasis 9.7 Conclusions References Chapter 10: Genetic Advancement in Dry Pea (Pisum sativum L.): Retrospect and Prospect 10.1 Introduction 10.2 Dry Pea Area, Production, and Productivity Scenario at Worldwide 10.3 Systematic, Origin, and Domestication 10.4 Available Genetic Resources at Global Level 10.5 Genetic Improvement of Important Agronomic Traits (Retrospect) 10.5.1 Breeding for Lodging Resistance 10.5.2 Breeding for Dwarf Type 10.5.3 Breeding for Biotic Stresses 10.5.3.1 Powdery Mildew 10.5.3.2 Rust 10.5.3.3 Ascochyta Blight 10.5.3.4 Fusarium Root Rot 10.5.3.5 Fusarium Wilt 10.5.3.6 Common Root Rot 10.5.4 Breeding for Abiotic Stresses 10.5.4.1 Heat Stress 10.5.4.2 Drought Stress 10.5.4.3 Frost Stress 10.6 Future Perspectives References Chapter 11: Translational Genomics and Breeding in Soybean 11.1 Introduction 11.2 Flowering and Maturity Duration 11.3 Quality Traits 11.3.1 Flavour and Fragrance 11.3.2 Protein Digestibility 11.3.3 Mineral Availability 11.3.4 Oxidative Stability of Soybean Oil 11.3.5 Pyramiding the Desirable Quality Traits 11.4 Diseases 11.4.1 Rust 11.4.2 Soybean Mosaic Virus 11.4.3 Yellow Mosaic Disease 11.5 Future Prospects References Chapter 12: Efficient Improvement in an Orphan Legume: Horsegram, Macrotyloma uniflorum (Lam.) Verdi, Using Conventional and Molecular Approaches 12.1 Introduction 12.2 Genetic Resources and Distribution 12.3 Conventional Breeding Strategies 12.3.1 Mutation Studies 12.3.2 Wide Hybridization 12.4 Conventional Versus Molecular Approach 12.5 Molecular Approach for Genetic Improvement 12.6 Conclusion References Chapter 13: Molecular and Conventional Breeding Strategies for Improving Biotic Stress Resistance in Common Bean 13.1 Introduction 13.2 Genetic Resources at World Gene Bank 13.3 Common Bean Production Trends and Gaps 13.4 Limiting Bean Yield 13.5 Breeding for Disease Resistance 13.5.1 Viral Diseases 13.5.1.1 Bean Common Mosaic and Bean Common Mosaic Necrosis Viruses 13.5.1.2 Golden Mosaic and Bean Golden Yellow Mosaic Virus 13.5.2 Fungal Diseases 13.5.2.1 Anthracnose (ANT) 13.5.2.2 Angular Leaf Spot (ALS) 13.5.2.3 Powdery Mildew (PWM) 13.5.2.4 Rust 13.5.3 Bacterial Diseases 13.5.3.1 Common Bacterial Blight (CBB) 13.5.3.2 Halo Blight (HB) 13.6 Molecular Breeding 13.6.1 Diagnostic Markers for Disease Resistance Breeding 13.6.2 Tagging and Mapping 13.6.3 MAS for Disease Resistance 13.7 Perspective References Index