دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Satbir Singh Gosal. Shabir Hussain Wani
سری:
ISBN (شابک) : 3030472973, 9783030472979
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 472
[457]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Accelerated Plant Breeding, Volume 2: Vegetable Crops به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصلاح سریع گیاهان ، دوره 2: محصولات سبزیجات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهبود گیاه تمرکز خود را از عملکرد، کیفیت و مقاومت در برابر بیماری به عواملی تغییر داده است که صادرات تجاری را افزایش میدهند، مانند بلوغ زودرس، ماندگاری و کیفیت پردازش بهتر. روش های مرسوم اصلاح نباتات با هدف بهبود یک محصول خود گرده افشانی مانند گندم، معمولاً 10-12 سال طول می کشد تا رشد و رهاسازی گونه جدید انجام شود. در طول 10 سال گذشته، پیشرفتهای قابل توجهی صورت گرفته و روشهای سریعتری برای اصلاح دقیق و رهاسازی زودهنگام واریتههای زراعی توسعه یافته است.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties.
Foreword Preface Contents About the Editors Chapter 1: Major Paradigm Shifts in Potato Breeding 1.1 Introduction 1.2 Early Efforts in Potato Breeding 1.3 Constraints in Potato Breeding 1.4 Potato Breeding Programme 1.5 Methods to Accelerate Potato Breeding 1.5.1 Marker-Assisted Breeding 1.5.2 Diploid Hybrid Breeding 1.5.3 Speed Breeding 1.5.4 Genomic Selection 1.5.5 Genome Editing References Chapter 2: A Rapid Disease Resistance Breeding in Tomato (Solanum lycopersicum L.) 2.1 Introduction 2.2 Breeding for Resistance to Fungal Pathogens 2.2.1 Late Blight (LB) 2.2.2 Early Blight 2.2.3 Leaf Mold 2.2.4 Anthracnose 2.2.5 Powdery Mildew 2.2.6 Fusarium Wilt 2.2.7 Verticillium Wilt 2.2.8 Septoria Leaf Spot 2.2.9 Grey Leaf Spot 2.3 Breeding for Resistance to Root-Knot Nematodes 2.4 Breeding for Resistance to Bacterial Diseases 2.4.1 Bacterial Wilt 2.4.2 Bacterial Speck 2.4.3 Bacterial Canker 2.4.4 Bacterial Spot 2.5 Breeding for Resistance to Viral Diseases 2.5.1 Tomato Leaf Curl Disease/Tomato Yellow Leaf Curl Disease 2.5.1.1 Breeding for Resistance to Tomato Leaf Curl Disease 2.5.2 Bud Necrosis Disease of Tomato 2.5.2.1 Resistance Breeding to Bud Necrosis Disease 2.5.3 Tomato Mosaic Virus (Tomv) Resistance 2.6 Development of Multiple Disease-Resistant Advanced Breeding Lines 2.7 Development of Tomato F1 Hybrids with Multiple Disease Resistance 2.8 Breeding Tomatoes for Processing Quality with Resistance to Diseases References Chapter 3: Improvement of Onion Through Accelerated Approaches 3.1 Introduction 3.2 Shortening of Biennial Life Cycle 3.3 Production of Doubled Haploids 3.3.1 Methods of DH Induction 3.3.1.1 Androgenesis 3.3.1.2 Gynogenesis 3.3.1.2.1 Genotype 3.3.1.2.2 Geographic Background of Genotype 3.3.1.2.3 Pretreatment 3.3.1.2.4 Nature of Explant 3.3.1.2.5 Media Composition 3.3.1.3 Chromosome Doubling 3.4 Marker-Assisted Selection 3.4.1 Development of Male Sterile Lines 3.4.2 Quality Traits 3.5 Genomic Resources for Marker Development and Gene Discovery 3.6 Conclusion References Chapter 4: Rapid Methods for Onion Breeding 4.1 Introduction 4.2 Haploid Induction 4.2.1 Chromosome Doubling, Recovery, and Determination of Haploidy 4.2.2 Genetics and Evaluation of DH Lines 4.2.3 Application of DH Lines in Onion Genomic Research 4.3 Genetic Diversity 4.4 Linkage Maps 4.5 Marker-Assisted Selection: Male Sterility 4.6 Genetic Transformation 4.7 Biotic Stress 4.8 Shuttle Breeding References Chapter 5: Accelerated Improvement of Cole Vegetable Crops 5.1 Introduction 5.2 Breeding Objectives in Cole Vegetables 5.3 Understanding Evolutionary Process of Cole Vegetables 5.4 Genetic Diversity and Exploring Wild Relatives 5.5 Genetic Mechanisms for Hybrid Breeding 5.5.1 Self-Incompatibility 5.5.2 Male Sterility 5.5.3 Combining Ability Studies 5.5.4 Heterosis Breeding 5.5.4.1 Hybrids/Varieties Developed in Cole Vegetables in India 5.6 Resistance Breeding 5.7 Breeding for Heat Tolerance 5.8 Breeding for Quality Traits 5.8.1 Breeding for Selective Increase of Glucosinolates 5.8.2 Beta-carotene Biofortification 5.8.3 Anthocyanin Biofortification 5.9 Innovative Techniques in Cole Vegetables 5.9.1 Marker-Assisted Breeding 5.9.2 Transgenics in Cole Crops 5.9.3 Genome and Transcriptome Sequencing 5.9.4 TILLING and EcoTILLING 5.9.5 SNPs Discovery and Use in Genotyping Platforms 5.9.6 CRISPR/Cas9 in Cole Crops References Chapter 6: Marker-Assisted Selection in Pea Breeding 6.1 Introduction 6.2 Molecular Markers 6.2.1 Ideal Molecular Marker 6.3 Molecular Mapping in Pea 6.4 New Molecular Breeding Strategies 6.4.1 Marker-Assisted Backcrossing (MAB) 6.4.2 Marker-Assisted Gene Pyramiding (MAGP) 6.4.3 Marker-Assisted Recurrent Selection (MARS) 6.4.4 Genome Selection 6.5 Examples of MAS in Pea Breeding 6.6 Future Prospects References Chapter 7: Efficient Methods for the Improvement of Temperate Root Vegetables 7.1 Beetroot (Beta vulgaris L.) 7.1.1 Introduction and Importance 7.1.2 Crop History 7.1.3 Improvement of Beetroot 7.1.4 Genetics of Beetroot 7.1.5 Major Breeding Objectives 7.1.6 Genetic Resources 7.1.7 Strategies Methods of Improvement 7.1.7.1 Mass Selection 7.1.7.2 Heterosis and Male Sterility 7.1.7.3 Mutation Breeding 7.1.7.4 Hybrid Seed Production 7.1.7.5 Polyploidy Breeding 7.1.7.6 Use of Biotechnology in Beetroot 7.1.8 Commercial Seed Production 7.2 Carrot (Daucus carota L.) 7.2.1 Introduction and Importance 7.2.2 Germplasm Resources and Management 7.2.3 Crop Improvement 7.2.4 Major Breeding Objectives 7.2.5 Development of Cultivar 7.2.6 Strategies and Methods of Improvement 7.2.6.1 Mass Selection 7.2.6.2 Hybrid Breeding 7.2.6.2.1 Use of Male Sterility in Hybrid Development and Its Maintenance 7.2.6.3 Synthetics 7.2.6.4 Recurrent Selection 7.2.6.5 Backcross Method 7.2.7 Breeding for Quality Traits 7.2.8 Use of Biotechnology 7.2.9 Commercial Seed Production 7.3 Radish (Raphanus sativus L.) 7.3.1 Crop History and Importance 7.3.2 Major Breeding Objectives 7.3.3 Crop Improvement and Taxonomy 7.3.4 Hybrid Development 7.3.5 Strategies and Methods of Improvement 7.3.5.1 Genes Involved in Bolting and Flowering Network in Radish 7.3.5.2 Male Sterility and Fertility Restorer Genes 7.3.5.3 Hybrid Breeding 7.3.5.4 Hybrid Seed Production 7.3.5.5 Mutation Breeding 7.3.5.6 Use of Biotechnology 7.3.6 Commercial Seed Production 7.4 Turnip (Brassica rapa L.) 7.4.1 Crop History and Importance 7.4.2 Major Breeding Objectives 7.4.3 Strategies and Methods of Crop Improvement 7.4.3.1 Heterosis Breeding 7.4.3.2 Intergeneric Hybridization 7.4.3.3 Synthetic Varieties 7.4.3.4 Composites 7.4.3.5 Use of Biotechnology References Chapter 8: Rapid Methods of Improvement in Brinjal 8.1 Introduction 8.2 Germplasm Characterization and Utilization 8.3 Exploitation of Wild Species 8.4 Development of Molecular Markers and Their Use 8.4.1 Use of Molecular Markers 8.5 Development of Haploids 8.6 Development and Use of Male Sterility 8.7 Parthenocarpy 8.8 Genetic Transformation 8.9 Future Prospects References Chapter 9: Conventional and Contemporary Approaches to Enhance Efficiency in Breeding Chilli/Hot Pepper 9.1 Introduction 9.2 Botany 9.3 Origin, Evolution and Domestication 9.4 Genetic Resource 9.5 Cytogenetics 9.6 Genetics 9.6.1 Qualitative Traits 9.6.2 Quantitative Traits 9.7 Breeding Objectives 9.8 Breeding Methods 9.8.1 Conventional Methods 9.8.1.1 Mass Selection 9.8.1.2 Pure-Line Selection 9.8.1.3 Pedigree Method 9.8.1.4 Single Seed Descent Method 9.8.1.5 Backcross Breeding 9.8.1.6 Recurrent Selection 9.8.1.7 Heterosis Breeding 9.8.2 Nonconventional Breeding Methods 9.8.2.1 Distant Hybridization 9.8.2.2 Mutation Breeding 9.8.2.3 Biotechnology Tools 9.8.2.3.1 Tissue Culture 9.8.2.3.2 Genetic Transformation 9.8.2.3.3 Doubled Haploids 9.9 Major Cultivar Options in Chilli 9.10 Hybrid Development 9.10.1 Non-CMS-Based Hybrid Development 9.10.2 Male Sterility-Based Hybrid Development 9.10.2.1 Genetic Male Sterility (GMS) 9.10.2.2 Cytoplasmic Male Sterility (CMS) 9.11 Stress Resistance Breeding 9.11.1 Biotic Stress Breeding 9.11.2 Abiotic Stress 9.12 Quality Breeding 9.13 Genomics and Molecular Approaches 9.14 Future Prospectus References Chapter 10: Accelerated Breeding in Cucumber Using Genomic Approaches 10.1 Introduction 10.2 Taxonomy and Genomic Structure 10.3 Floral Biology and Sex Expression 10.4 Breeding Behaviour of Cucumber 10.5 Genomics-Based Strategies for Accelerated Breeding in Cucumber 10.5.1 Utilization of Wild Species in Broadening the Genetic Base 10.5.1.1 Genetic and Molecular Basis of Bitterness in Cucumber 10.5.2 Rapid Development of Cucumber Genotypes with Resistance to Major Biotic Stresses 10.5.2.1 Downy Mildew 10.5.2.2 Powdery Mildew 10.5.2.2.1 Inheritance 10.5.2.2.2 Genetic Resources and Molecular Characterization of Resistant Genotypes 10.5.2.3 Anthracnose 10.6 Rapid Development of Inbreds and Creation of Genetic Diversity 10.7 Rapid Development of Genotypes with Desirable Agronomic Traits Through Marker-Assisted Back-Crossing 10.8 Rapid Generation Cycling Using Greenhouse and Protected Structures and In Vitro Culture 10.9 Future Strategies References Chapter 11: Advances in Improvement of Pumpkin and Squashes 11.1 Introduction 11.2 Germplasm Characterization 11.3 Utilization of Cucurbita Species in Hybridization 11.4 Breeding Objectives 11.4.1 Yield 11.4.2 Quality 11.4.3 Shelf Life 11.4.4 Hull-Less Seed 11.4.5 Abiotic Stress Resistance 11.4.6 Virus Resistance 11.4.7 Disease Resistance 11.4.8 Insect Resistance 11.5 Molecular Markers Development and Their Utilization 11.6 Development of Doubled Haploids 11.7 Transcriptome Sequencing for Better Understanding of Genetics and Biology 11.8 Genetic Modification and Transformation 11.9 Future Breeding Tools to Accelerate Improvement Programmes 11.10 Conclusion References Chapter 12: Accelerated Breeding in Okra 12.1 Introduction 12.2 Speeding Up of Selection Generations in Conventional Breeding 12.2.1 Flowering Manipulation 12.2.2 Doubled Haploids 12.2.3 Early Multilocation Trials 12.2.4 Marker-Assisted Selection 12.2.5 Heterosis Breeding 12.3 Nonconventional Breeding Methods 12.3.1 Mutation Breeding 12.3.2 Tissue Culture and Genetic Transformation 12.4 Conclusion 12.5 Future Prospects References Chapter 13: New Initiatives in Quick Bitter Gourd Breeding 13.1 Introduction 13.2 Morphology of Momordica charantia L. 13.3 Reproductive Biology 13.4 Floral Biology 13.5 Flowering and Pollination 13.6 Sex Expression and Modification 13.7 Molecular Marker Studies in Bitter Gourd 13.8 Genomic Studies in Bitter Gourd 13.9 Transcriptomic Studies in Bitter Gourd 13.10 Future Strategies References Chapter 14: Principles and Techniques for Rapid Improvement of Muskmelon for Yield, Fruit Quality and Resistance to Biotic Stresses 14.1 Introduction 14.2 Origin and Evolution 14.3 Horticultural Groupings of Melon 14.4 Genetic Diversity for Fruit Traits 14.5 Breeding Objectives and Commercial Varieties 14.6 Molecular Mapping of Important Horticultural Traits 14.7 Molecular Breeding for Fruit Quality Improvement 14.8 Molecular Breeding for High β-Carotene Content 14.9 Gene Expression and Molecular Changes During Ripening 14.10 In Vitro Culture 14.11 Genetic Engineering for Fruit Quality Improvements 14.12 Biotic Stress Resistance in Muskmelon 14.12.1 Powdery Mildew 14.12.2 Downy Mildew 14.12.3 Fusarium Wilt 14.12.3.1 Marker-Assisted Breeding for Resistance Against Fusarium Wilt 14.12.4 Gummy Stem Blight 14.12.5 Viruses 14.12.6 Insect-Pests 14.13 Genetic Engineering for Disease Resistance References Chapter 15: Accelerated Breeding of Cowpea [Vigna unguiculata (L.) Walp.] for Improved Yield and Pest Resistance 15.1 Introduction 15.2 Genetic Diversity and Taxonomy 15.3 Genetics 15.4 Improved Varieties of Cowpea 15.5 Breeding Cowpea for Pest Resistance 15.5.1 Cowpea Golden Mosaic Disease Resistance 15.5.2 Cercospora Resistance 15.5.3 Anthracnose Resistance 15.5.4 Bruchid Resistance 15.5.5 Pod Borer Resistance 15.6 Tissue Culture Plant Regeneration Protocols for Cowpea 15.7 Embryo Rescue 15.8 Genomics-Assisted Breeding 15.9 Conclusion References Chapter 16: Recent Trends in Sweet Pepper Breeding 16.1 Introduction 16.2 Crop Biology 16.3 Breeding Objectives 16.4 Heterosis Breeding 16.5 Disease Resistance Breeding 16.5.1 Phytophthora Rot 16.5.2 Powdery Mildew 16.5.3 Anthracnose in Sweet Pepper 16.6 Rootstock Breeding in Capsicum 16.7 Marker-Assisted Breeding 16.8 Haploid Production 16.9 Transgenics References Index