دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Satbir Singh Gosal, Shabir Hussain Wani سری: ISBN (شابک) : 3030418650, 9783030418656 ناشر: Springer سال نشر: 2020 تعداد صفحات: 450 [455] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Accelerated Plant Breeding, Volume 1: Cereal Crops به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصلاح نباتات تسریع شده، جلد 1: محصولات غلات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهبود گیاه تمرکز خود را از عملکرد، کیفیت و مقاومت در برابر بیماری به عواملی تغییر داده است که صادرات تجاری را افزایش می دهد، مانند بلوغ زودرس، ماندگاری و کیفیت پردازش بهتر. روش های مرسوم اصلاح نباتات با هدف بهبود یک محصول خود گرده افشانی مانند گندم، معمولاً 10-12 سال طول می کشد تا رشد و رهاسازی گونه جدید انجام شود. در طول 10 سال گذشته، پیشرفت های قابل توجهی صورت گرفته و روش های تسریع شده ای برای اصلاح دقیق و رهاسازی زودهنگام واریته های زراعی توسعه یافته است. این کار مفاهیم مربوط به افزایش ژرم پلاسم و توسعه واریتههای بهبود یافته را بر اساس روشهای نوآورانه خلاصه میکند که شامل هاپلوئیدی مضاعف، انتخاب به کمک نشانگر، انتخاب پسزمینه به کمک نشانگر، نقشهبرداری ژنتیکی، انتخاب ژنومی، ژنوتیپسازی با توان عملیاتی بالا، فنوتیپ با توان بالا، اصلاح جهش، اصلاح معکوس، اصلاح تراریخته، اصلاح شاتل، اصلاح سریع، فنوتیپ با توان بالا و هزینه کم. این یک مرجع مهم با تمرکز ویژه بر توسعه سریع واریته های زراعی بهبود یافته است.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
Dr. Gurdev Singh Khush Foreword Preface Contents About the Editors Chapter 1: Accelerated Breeding of Plants: Methods and Applications 1.1 Introduction 1.2 Doubled Haploidy 1.2.1 Methods of Haploid Production 1.2.1.1 Anther Culture 1.2.1.2 Isolated Microspore Culture 1.2.1.3 Ovary Culture 1.2.1.4 Embryo Rescue from Wide Crosses Bulbosum Method Haploid Production in Wheat from Wheat × Maize and Wheat × Imperata cylindrica Crosses 1.2.1.5 In Vivo Haploid Production Using Inducer Lines 1.2.1.6 Gene Engineering for Induction of Haploids 1.3 Micropropagation 1.4 Somaclonal Variation 1.5 Embryo Culture 1.6 Transgenic Breeding 1.7 Speed Breeding 1.8 Shuttle Breeding 1.9 Genomic Selection 1.10 Reverse Breeding 1.11 Genome Editing 1.12 Marker-Assisted Selection 1.13 Marker-Assisted Background Selection 1.14 Genetic Mapping 1.15 Single Seed Descent Method 1.16 High-Throughput Phenotyping 1.17 High-Throughput Genotyping 1.18 Future Prospects References Chapter 2: Speed Breeding: Methods and Applications 2.1 Introduction 2.2 History of Speed Breeding 2.3 Methods and Application of Speed Breeding in Various Crops 2.4 Speed Breeding in Cereals 2.5 Speed Breeding in Other Crops References Chapter 3: Genomic Selection in Cereal Crops: Methods and Applications 3.1 Introduction 3.2 Backgrounds 3.2.1 Breeding Selection 3.2.2 Marker-Based Selection 3.2.3 Genomic Selection 3.2.3.1 What Is Genomic Selection? 3.2.3.2 How GS Works? 3.2.4 Importance of GS 3.2.5 Genetic Gains 3.2.6 Genetic Estimation and Prediction 3.2.7 Integration of Bioinformatics and Genomics Tools in GS 3.3 Prediction and Evaluation of Breeding Scheme 3.3.1 Breeding Schemes 3.3.1.1 F2 Recurrent Mass Genomic Selection 3.3.1.2 F3 Recurrent Genomic Selection 3.3.1.3 F4 Recurrent Genomic Selection 3.3.1.4 F7 Recurrent Genomic Selection 3.3.2 Marker-Assisted Selection (MAS) 3.3.2.1 Models for Marker Effect 3.3.2.2 Least Square (LS) Method 3.3.2.3 Best Linear Unbiased Prediction (BLUP) Method 3.3.2.4 Bayesian Estimation 3.3.2.5 Machine Learning 3.3.2.6 Prediction of Total Genetic Value: High-Throughput Genotyping (SNPs) 3.4 Statistical Model of GS 3.4.1 Least Square 3.4.2 BLUP and BLUE 3.4.3 Bayesian Framework 3.4.4 Performance of Statistical Model in GS 3.4.4.1 Factors Influencing the Accuracy of Genomic Prediction 3.5 Statistical Concept of GS 3.6 Efficacy and Power of GS 3.6.1 Effective Population Size 3.6.2 Marker Type and Density 3.6.3 Heritability of Trait 3.6.4 Kinship 3.7 Advantages and Disadvantages of GS 3.7.1 Advantages 3.7.2 Disadvantages 3.8 Perspectives References Chapter 4: Data-Driven Decisions for Accelerated Plant Breeding 4.1 Introduction 4.2 Plant Breeding 4.3 Need for Data Management and Integration 4.4 Data Acquisition 4.4.1 Genotype Data 4.4.2 Phenotype Data 4.4.2.1 Proteomic Data 4.4.2.2 Metabolomic Data 4.4.2.3 Phenomic Data 4.4.3 Environment Data 4.5 Data Integration 4.6 Data Analysis 4.6.1 Genotypic Analysis 4.6.2 Phenotypic Analysis 4.6.3 Modelling GEI 4.7 Outlook and Future Perspectives References Chapter 5: Advanced Quantitative Genetics Technologies for Accelerating Plant Breeding 5.1 Introduction: Historical Background 5.2 Molecular Markers: Resurgence of Quantitative Genetics 5.3 Advances in Quantitative Genetics 5.3.1 High-Throughput Genotyping Procedures 5.3.2 High-Throughput Phenotyping Procedures 5.3.3 Advances in QTL Mapping 5.3.3.1 GWAS: Mapping QTL in Natural Populations 5.3.3.2 NGS-Based Bulked Segregant Analysis 5.4 Genomic Selection 5.5 Future Prospects References Chapter 6: Haploid Production Technology: Fasten Wheat Breeding to Meet Future Food Security 6.1 Introduction 6.2 Haploid Plant Formation 6.3 Maize Method and Wide Crossing 6.3.1 Haploid Induction with H. bulbosum and Panicoideae Species 6.3.2 Maize Method and Pollination 6.3.3 Chemical Stimulation for Grain Swelling 6.3.4 Embryo Rescue 6.3.5 Chromosome Doubling 6.4 Anther Culture and Microspore Culture 6.4.1 Pretreatment 6.4.2 Induction 6.4.3 Regeneration 6.4.4 Anther Culture vs. Microspore Culture 6.4.5 Anther/Microspore Culture vs. Maize Method 6.5 DH Practices in Wheat Breeding 6.6 How to Apply DH to Wheat Breeding 6.7 Future Improvements in Wheat DH Technology 6.8 Conclusion References Chapter 7: Recent Advances in Chromosome Elimination-Mediated Doubled Haploidy Breeding: Focus on Speed Breeding in Bread and Durum Wheats 7.1 Introduction 7.2 Chromosome Elimination: Mechanism 7.2.1 Wide Hybridization 7.2.1.1 Bulbosum Method 7.2.1.2 Wheat × Maize System 7.2.1.3 Wheat × Imperata cylindrica System 7.2.2 Targeted Centromere Manipulation 7.2.2.1 Methods of CENH3 Modifications 7.2.3 CRISPR/Cas9-Mediated Targeted Chromosome Elimination 7.3 Chromosome Doubling for Generation of Homozygous Plants from Haploids 7.4 Chromosome Elimination-Assisted Wheat Improvement 7.5 Conclusion and Future Prospects References Chapter 8: Acceleration of the Breeding Program for Winter Wheat 8.1 Introduction 8.1.1 The Importance of Winter Wheat 8.1.2 Winter Wheat Breeding Programs 8.1.3 Doubled Haploidy Technology 8.1.4 Doubled Haploidy Technology for Winter Wheat 8.1.5 Wheat × Maize Method 8.1.6 Androgenesis 8.1.6.1 Winter Wheat: Growing Donor Plants 8.1.6.2 Collecting Spikes for Microspore Isolations 8.1.6.3 Collecting and Sterilization of Spikes for Ovaries 8.1.6.4 Sterilization of Spikes for Microspore Isolation 8.1.6.5 Microspore Isolation 8.1.6.6 Addition of Ovaries 8.1.6.7 Plating Embryoids 8.1.6.8 Plantlet Development 8.1.7 Doubled Haploids in a Breeding Program 8.1.8 Speed Breeding 8.1.8.1 Winter Wheat Speed Breeding Protocol Growth of Recurrent Parents Embryo Rescue of Donors (Protocol Modified from Zheng et al. 2013) Growth of Donor Plants Crossing 8.1.9 Conclusion References Chapter 9: Genomics, Biotechnology and Plant Breeding for the Improvement of Rice Production 9.1 Introduction 9.2 Strategy 9.3 Methods, Characterization and Assays for Functional Gene Introgression 9.3.1 Different Functional Genes for High Yield of Rice 9.3.2 Assays for the Development of Gene/Allele-Specific Markers 9.3.3 Breeding Methods for the Precise Transfer of High-Yield Functional Genes 9.4 Trait Analysis and Product Development 9.4.1 Transfer of High-Yield Traits/Genes 9.4.2 Foreground Selection for Presence or Absence of High-Yield Genes 9.4.3 Background Selection and Superior Genotype Selection 9.4.4 Selection and Development of Ideal Breeding Lines 9.4.5 Application of Genome-Editing Tools for Rice Yield Improvement 9.5 Summary and Conclusions References Chapter 10: High-Frequency Androgenic Green Plant Regeneration in Indica Rice for Accelerated Breeding 10.1 Introduction 10.2 Green Plant Regeneration 10.2.1 Source of Explants 10.2.1.1 Genotype 10.2.1.2 Growing Environment 10.2.1.3 Stages of Microspore 10.3 Physical Factor 10.3.1 Pre-incubation 10.3.1.1 Temperature Pre-treatment 10.3.1.2 Nutrient Starvation 10.3.2 Incubation Condition 10.3.3 Light and Photoperiodism 10.3.4 Temperature and Humidity 10.4 Chemical Factors 10.4.1 Media (Micro- and Macronutrients) 10.4.1.1 Carbon Source 10.4.1.2 Nitrogen Source 10.4.1.3 Plant Growth Regulator and Additives Auxin Cytokinin Polyamines Other Chemicals 10.5 Types of Culture 10.5.1 Liquid and Solid Culture 10.6 Albinism 10.7 Authenticity of True DHs 10.8 Artificial and Spontaneous Doubling 10.8.1 Artificial Genome Doubling 10.8.2 Spontaneous Genome Doubling 10.9 Rooting and Acclimatization 10.10 Field Performance of Doubled Haploids 10.11 Conclusion References Chapter 11: Doubled Haploid Technology for Rapid and Efficient Maize Breeding 11.1 Introduction 11.2 Procedures for the Development of Maize DH Lines 11.2.1 Induction of Haploids 11.2.1.1 In Vitro Production of Haploids 11.2.1.2 In Vivo Haploid Induction Paternal Haploid Induction Maternal Haploid Induction 11.2.2 Maternal Haploid Induction Associated Traits 11.2.3 Genetics of Maternal Haploid Induction 11.2.4 Possible Mechanisms of Maternal Haploid Induction 11.2.5 Breeding for Maternal Haploid Inducers and Their Maintenance 11.3 Identification of In Vivo Induced Maternal Haploids 11.3.1 Haploid Identification Using Genetic Markers 11.3.2 Haploid Identification Based on Natural Differences in Haploids and Diploids 11.4 Doubling Haploid Genome 11.4.1 Artificial Genome Doubling 11.4.2 Spontaneous Genome Doubling 11.5 Production of Seed for DH Lines 11.6 Benefits of Using DH Lines in Maize Breeding 11.7 Conclusions References Chapter 12: Biofortification of Maize Using Accelerated Breeding Tools 12.1 Introduction 12.2 Marker-Assisted Selection/Marker-Assisted Backcross Breeding 12.2.1 Tryptophan and Lysine 12.2.2 Provitamin A 12.2.3 Methionine 12.2.4 Phytic Acid 12.2.5 Iron and Zinc 12.3 Doubled Haploid (DH) Technology 12.4 Gene/Genome Editing 12.5 Conclusion References Chapter 13: Efficient Barley Breeding 13.1 Introduction 13.2 Barley Production Worldwide 13.3 Domestication and Cultivation of Barley 13.3.1 Brittleness of Rachis 13.3.2 Kernel Row Type 13.3.3 Covered and Naked Kernels 13.3.4 Dormancy 13.3.5 Growth Habit 13.3.6 Productivity and Quality Traits 13.3.7 Disease Resistance 13.3.8 Abiotic Stress Tolerance 13.4 Breeding Goals 13.4.1 Barley for Feed and Food 13.4.1.1 Malting/Brewing 13.4.1.2 Livestock Feed 13.4.1.3 Food 13.4.1.4 Cholesterol-Free or Lower in Fat Content 13.4.1.5 Vitamins and Minerals 13.4.1.6 Antioxidants and Phytochemicals 13.4.2 Malt Barley Improvement 13.4.3 Breeding Barley for Abiotic Stress Tolerance 13.4.3.1 Temperature Stress in Barley 13.4.3.2 Freezing Stress 13.4.3.3 Heavy Metal Toxicity 13.4.3.4 Drought Stress 13.4.3.5 Waterlogging 13.4.3.6 Lodging 13.4.3.7 Nutrient Stress 13.4.4 Resistance to Biotic Stresses 13.5 Breeding Techniques 13.5.1 Bulk Method 13.5.2 Composite Crosses 13.5.3 Male Sterile-Facilitated Recurrent Selection 13.5.4 Pedigree Breeding Method 13.5.5 Backcross Breeding 13.5.6 Single Seed Descent 13.5.7 Haploid Breeding Method 13.6 Biotechnology-Based and Marker-Assisted Approaches 13.6.1 Evolution of Breeding Methods 13.6.1.1 Acceleration of Barley Breeding via Haploidy 13.6.1.2 Molecular Markers and Marker-Assisted Selection 13.6.1.3 Genome Analysis and GM Barley 13.6.2 Molecular Breeding and Genomics in Barley for Biotic Stress Resistance 13.7 Bottlenecks and Prospects for Barley Improvement 13.7.1 Genetic Bottleneck 13.7.2 Pre-breeding and Exploration of Genetic Diversity 13.8 Breeding Goals and Projected Progresses References Chapter 14: Finger Millet (Eleusine coracana (L.) Gaertn.) Genetics and Breeding for Rapid Genetic Gains 14.1 Introduction 14.2 Nomenclature 14.3 Economic Importance 14.4 Origin 14.5 Distribution 14.6 Botany 14.7 Cytogenetics 14.8 Genetic Resources 14.9 Genetics 14.9.1 Qualitative Traits 14.9.2 Quantitative Traits 14.10 Breeding 14.10.1 Breeding for Productivity Per Se Traits in India 14.10.2 Breeding Finger Millet in Africa 14.10.3 Breeding for Resistance to Blast Disease 14.10.3.1 Sources of Resistance to Blast Disease 14.10.3.2 Breeding for Resistance to Blast Disease 14.11 Genomics-Assisted Breeding 14.12 Future Prospects References Chapter 15: Breeding Advancements in Barnyard Millet 15.1 Introduction 15.2 Domestication and Phylogeny 15.2.1 Echinochloa frumentacea Link 15.2.2 Echinochloa esculenta (a. Braun) H. Scholtz 15.3 Germplasm and its Characterization 15.4 Major Breeding Objectives 15.5 Conventional Breeding Efforts 15.6 Breeding for Resistance to Diseases and Insect Pests 15.7 Modern Breeding Approaches to Accelerate the Genetic Gain in Barnyard Millet 15.7.1 Mutation Breeding 15.7.2 Interspecific Hybridization: Widening the Barnyard Millet Gene Pool 15.7.3 Genomics-Assisted Breeding for Trait Improvement 15.7.4 Genetic Transformation for Gain and Loss of Gene Function 15.7.5 Biofortification for Genetic Enhancement of Nutraceutical Value 15.8 Current Developments 15.9 Future Prospects References Chapter 16: Sorghum Improvement Through Efficient Breeding Technologies 16.1 Introduction 16.2 Harnessing Natural Variability in Sorghum Improvement 16.3 Hybrid Breeding in Sorghum 16.4 Utilization of Trait Specific Genes in Sorghum Breeding 16.4.1 Maturity 16.4.2 Plant Height 16.4.3 Male Sterility 16.4.4 Brown Mid Rib 16.5 Modern Breeding Strategies 16.5.1 QTL Mapping Studies and Genomics 16.5.2 Association Mapping 16.5.3 Genomic Selection 16.5.4 Transgenic Approach 16.5.5 Genome Editing 16.6 Mutation Breeding 16.7 Apomixis in Sorghum 16.8 Way Forward References Index