ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Abstract Algebra. An Inquiry based Approach

دانلود کتاب جبر انتزاعی. یک رویکرد مبتنی بر تحقیق

Abstract Algebra. An Inquiry based Approach

مشخصات کتاب

Abstract Algebra. An Inquiry based Approach

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781466567085 
ناشر: CRC 
سال نشر: 2014 
تعداد صفحات: 564 
زبان: english 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 3 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Abstract Algebra. An Inquiry based Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جبر انتزاعی. یک رویکرد مبتنی بر تحقیق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب جبر انتزاعی. یک رویکرد مبتنی بر تحقیق

برای یادگیری و درک ریاضیات، دانش آموزان باید در فرآیند انجام ریاضیات شرکت کنند. با تأکید بر یادگیری فعال، جبر انتزاعی: رویکرد مبتنی بر تحقیق نه تنها جبر انتزاعی را آموزش می دهد، بلکه درک عمیق تری از چیستی ریاضیات، نحوه انجام آن و نحوه تفکر ریاضیدانان را نیز ارائه می دهد. این کتاب در دو دوره جبر انتزاعی حلقه اول و گروه اول قابل استفاده است. فعالیت‌ها، مثال‌ها و تمرین‌های متعدد تعاریف، قضایا و مفاهیم را نشان می‌دهند. از طریق این فرآیند یادگیری جذاب، دانش‌آموزان ایده‌های جدیدی را کشف می‌کنند و مهارت‌های ارتباطی و دقت لازم را برای درک و به کارگیری مفاهیم جبر انتزاعی توسعه می‌دهند. علاوه بر فعالیت ها و تمرین ها، هر فصل شامل یک بحث کوتاه در مورد ارتباط بین موضوعات در نظریه حلقه و نظریه گروه است. این بحث‌ها به دانش‌آموزان کمک می‌کند تا روابط بین دو نوع اصلی شیء جبری مورد مطالعه در متن را ببینند. این متن که دانش‌آموزان را تشویق می‌کند تا ریاضیات را انجام دهند و فراتر از یادگیرنده‌های غیرفعال باشند، به دانش‌آموزان نشان می‌دهد که روش توسعه ریاضیات اغلب با نحوه ارائه آن متفاوت است. این که تعاریف، قضایا و برهان ها به سادگی در ذهن ریاضیدانان کاملاً شکل گرفته به نظر نمی رسند. که ایده های ریاضی به شدت به هم مرتبط هستند. و حتی در زمینه ای مانند جبر انتزاعی، مقدار قابل توجهی از شهود یافت می شود.


توضیحاتی درمورد کتاب به خارجی

To learn and understand mathematics, students must engage in the process of doing mathematics. Emphasizing active learning, Abstract Algebra: An Inquiry-Based Approach not only teaches abstract algebra but also provides a deeper understanding of what mathematics is, how it is done, and how mathematicians think. The book can be used in both rings-first and groups-first abstract algebra courses. Numerous activities, examples, and exercises illustrate the definitions, theorems, and concepts. Through this engaging learning process, students discover new ideas and develop the necessary communication skills and rigor to understand and apply concepts from abstract algebra. In addition to the activities and exercises, each chapter includes a short discussion of the connections among topics in ring theory and group theory. These discussions help students see the relationships between the two main types of algebraic objects studied throughout the text. Encouraging students to do mathematics and be more than passive learners, this text shows students that the way mathematics is developed is often different than how it is presented; that definitions, theorems, and proofs do not simply appear fully formed in the minds of mathematicians; that mathematical ideas are highly interconnected; and that even in a field like abstract algebra, there is a considerable amount of intuition to be found.



فهرست مطالب

Content: The Integers The Integers: An Introduction  Introduction Integer Arithmetic Ordering Axioms What's Next Concluding Activities Exercises Divisibility of Integers Introduction Quotients and Remainders TheWell-Ordering Principle Proving the Division Algorithm Putting It All Together Congruence Concluding Activities Exercises Greatest Common Divisors  Introduction Calculating Greatest Common Divisors The Euclidean Algorithm GCDs and Linear Combinations Well-Ordering, GCDs, and Linear Combinations Concluding Activities Exercises Prime Factorization  Introduction Defining Prime The Fundamental Theorem of Arithmetic Proving Existence Proving Uniqueness Putting It All Together Primes and Irreducibles in Other Number Systems Concluding Activities Exercises  Other Number Systems Equivalence Relations and Zn  Congruence Classes Equivalence Relations Equivalence Classes The Number System Zn Binary Operations Zero Divisors and Units in Zn Concluding Activities Exercises Algebra Introduction Subsets of the Real Numbers The Complex Numbers Matrices Collections of Sets Putting It All Together Concluding Activities Exercises  Rings An Introduction to Rings Introduction Basic Properties of Rings Commutative Rings and Rings with Identity Uniqueness of Identities and Inverses Zero Divisors and Multiplicative Cancellation Fields and Integral Domains Concluding Activities Exercises Connections Integer Multiples and Exponents  Introduction Integer Multiplication and Exponentiation Nonpositive Multiples and Exponents Properties of Integer Multiplication and Exponentiation The Characteristic of a Ring Concluding Activities Exercises Connections Subrings, Extensions, and Direct Sums Introduction The Subring Test Subfields and Field Extensions Direct Sums Concluding Activities Exercises Connections Isomorphism and Invariants  Introduction Isomorphisms of Rings Proving Isomorphism Disproving Isomorphism Invariants Concluding Activities Exercises Connections  Polynomial Rings Polynomial Rings Polynomial Rings Polynomials over an Integral Domain Polynomial Functions Concluding Activities Exercises Connections Appendix - Proof that R[x] Is a Commutative Ring Divisibility in Polynomial Rings  Introduction The Division Algorithm in F[x] Greatest Common Divisors of Polynomials Relatively Prime Polynomials The Euclidean Algorithm for Polynomials Concluding Activities Exercises Connections Roots, Factors, and Irreducible Polynomials  Polynomial Functions and Remainders Roots of Polynomials and the Factor Theorem Irreducible Polynomials Unique Factorization in F[x] Concluding Activities Exercises Connections Irreducible Polynomials Introduction Factorization in C[x] Factorization in R[x] Factorization in Q[x] Polynomials with No Linear Factors in Q[x] Reducing Polynomials in Z[x] Modulo Primes Eisenstein's Criterion Factorization in F[x] for Other Fields F Summary The Cubic Formula Concluding Activities Exercises Appendix - Proof of the Fundamental Theorem of Algebra Quotients of Polynomial Rings  Introduction CongruenceModulo a Polynomial Congruence Classes of Polynomials The Set F[x]/hf(x)i Special Quotients of Polynomial Rings Algebraic Numbers Concluding Activities Exercises Connections  More Ring Theory Ideals and Homomorphisms Introduction Ideals CongruenceModulo an Ideal Maximal and Prime Ideals Homomorphisms The Kernel and Image of a Homomorphism The First Isomorphism Theorem for Rings Concluding Activities Exercises Connections Divisibility and Factorization in Integral Domains  Introduction Divisibility and Euclidean Domains Primes and Irreducibles Unique Factorization Domains Proof 1: Generalizing Greatest Common Divisors Proof 2: Principal Ideal Domains Concluding Activities Exercises Connections From Z to C  Introduction FromW to Z Ordered Rings From Z to Q Ordering on Q From Q to R From R to C A Characterization of the Integers Concluding Activities Exercises Connections VI Groups 269 Symmetry  Introduction Symmetries Symmetries of Regular Polygons Concluding Activities Exercises An Introduction to Groups  Groups Examples of Groups Basic Properties of Groups Identities and Inverses in a Group The Order of a Group Groups of Units Concluding Activities Exercises Connections Integer Powers of Elements in a Group  Introduction Powers of Elements in a Group Concluding Activities Exercises Connections Subgroups  Introduction The Subgroup Test The Center of a Group The Subgroup Generated by an Element Concluding Activities Exercises Connections Subgroups of Cyclic Groups  Introduction Subgroups of Cyclic Groups Properties of the Order of an Element Finite Cyclic Groups Infinite Cyclic Groups Concluding Activities Exercises The Dihedral Groups  Introduction Relationships between Elements in Dn Generators and Group Presentations Concluding Activities Exercises Connections The Symmetric Groups  Introduction The Symmetric Group of a Set Permutation Notation and Cycles The Cycle Decomposition of a Permutation Transpositions Even and Odd Permutations and the Alternating Group Concluding Activities Exercises Connections Cosets and Lagrange's Theorem  Introduction A Relation in Groups Cosets Lagrange's Theorem Concluding Activities Exercises Connections Normal Subgroups and Quotient Groups  Introduction An Operation on Cosets Normal Subgroups Quotient Groups Cauchy's Theorem for Finite Abelian Groups Simple Groups and the Simplicity of An Concluding Activities Exercises Connections Products of Groups  External Direct Products of Groups Orders of Elements in Direct Products Internal Direct Products in Groups Concluding Activities Exercises Connections Group Isomorphisms and Invariants  Introduction Isomorphisms of Groups Proving Isomorphism Some Basic Properties of Isomorphisms Well-Defined Functions Disproving Isomorphism Invariants Isomorphism Classes Isomorphisms and Cyclic Groups Cayley's Theorem Concluding Activities Exercises Connections Homomorphisms and Isomorphism Theorems  Homomorphisms The Kernel of a Homomorphism The Image of a Homomorphism The Isomorphism Theorems for Groups Concluding Activities Exercises Connections The Fundamental Theorem of Finite Abelian Groups  Introduction The Components: p-Groups The Fundamental Theorem Concluding Activities Exercises The First Sylow Theorem  Introduction Conjugacy and the Class Equation Cauchy's Theorem The First Sylow Theorem The Second and Third Sylow Theorems Concluding Activities Exercises Connections The Second and Third Sylow Theorems  Introduction Conjugate Subgroups and Normalizers The Second Sylow Theorem The Third Sylow Theorem Concluding Activities Exercises  Special Topics RSA Encryption  Introduction Congruence and Modular Arithmetic The Basics of RSA Encryption An Example Why RSA Works Concluding Thoughts and Notes Exercises Check Digits  Introduction Check Digits Credit Card Check Digits ISBN Check Digits Verhoeff's Dihedral Group D5 Check Concluding Activities Exercises Connections Games: NIM and the 15 Puzzle  The Game of NIM The 15 Puzzle Concluding Activities Exercises Connections Finite Fields, the Group of Units in Zn, and Splitting Fields  Introduction Finite Fields The Group of Units of a Finite Field The Group of Units of Zn Splitting Fields Concluding Activities Exercises Connections Groups of Order 8 and 12: Semidirect Products of Groups  Introduction Groups of Order 8 Semi-direct Products of Groups Groups of Order 12 and p3 Concluding Activities Exercises Connections  Appendices  Functions Special Types of Functions: Injections and Surjections Composition of Functions Inverse Functions Theorems about Inverse Functions Concluding Activities Exercises Mathematical Induction and the Well-Ordering Principle Introduction The Principle of Mathematical Induction The Extended Principle of Mathematical Induction The Strong Form of Mathematical Induction TheWell-Ordering Principle The Equivalence of the Well-Ordering Principle and the Principles of Mathematical Induction. Concluding Activities Exercises




نظرات کاربران