دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Pardeep Singh (editor), Ajay Kumar (editor), Anwesha Borthakur (editor) سری: ISBN (شابک) : 0128180951, 9780128180952 ناشر: Elsevier Science Ltd سال نشر: 2019 تعداد صفحات: 365 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Abatement of Environmental Pollutants: Trends and Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاهش آلاینده های محیطی: روندها و استراتژی ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاهش آلایندههای محیطی: روندها و استراتژیها به فناوریهای جدید میپردازد و استراتژیهایی را برای دانشمندان محیط زیست، میکروبیولوژیستها و بیوتکنولوژیستها ارائه میکند تا به حل مشکلات مرتبط با تصفیه فاضلاب صنعتی کمک کنند. این کتاب به خوانندگان کمک میکند تا چالشهای آلودگی را با استفاده از میکروارگانیسمها در فنآوریهای زیست پالایی، از جمله بحثهایی در مورد فناوریهای جهانی که برای تصفیه فاضلاب صنعتی اتخاذ شدهاند و بخشهایی درباره عدم مدیریت صحیح، حل کنند. علاوه بر این، فضای محدود، مقررات دقیق تر دفع زباله و آگاهی عمومی، تکنیک های حاضر را گران و غیرعملی کرده است.
بنابراین، نیاز مبرمی به توسعه فناوری های مدیریت پایدار برای صنایع و شهرداری ها وجود دارد. برای از بین بردن اثرات مخرب آلاینده های آلی بر محیط زیست، اخیراً فناوری های مختلفی برای تخریب آنها کشف شده است.
Abatement of Environmental Pollutants: Trends and Strategies addresses new technologies and provides strategies for environmental scientists, microbiologists and biotechnologists to help solve problems associated with the treatment of industrial wastewater. The book helps readers solve pollution challenges using microorganisms in bioremediation technologies, including discussions on global technologies that have been adopted for the treatment of industrial wastewater and sections on the lack of proper management. Moreover, limited space, more stringent waste disposal regulations and public consciousness have made the present techniques expensive and impractical.
Therefore, there is an urgent need to develop sustainable management technologies for industries and municipalities. To remove the damaging effect of organic pollutants on the environment, various new technologies for their degradation have been recently discovered.
Cover Abatement of Environmental Pollutants Copyright Contributors 1 - Bioremediation: a sustainable approach for management of environmental contaminants 1. Introduction 2. Application of bioremediation for environmental pollutants cleanup 2.1 Bioremediation strategy for hydrocarbon contaminated water and soil 2.2 Bioremediation of heavy metal contaminated water 2.3 Bioremediation of dye contaminated water 2.3.1 Bioremediation approaches used for dye degradation 2.3.1.1 Aerobic treatment 2.3.1.2 Anaerobic treatment 2.3.1.3 Anoxic treatment 2.3.1.4 Sequential degradation of dyes 2.4 Vermi-biofiltration of wastewater 2.5 Bioremediation of pesticide contamination 2.6 Removal of pharmaceutical and personal care products by biological degradation processes 2.6.1 Pure cultures 2.6.2 Mixed cultures 2.6.3 Activated sludge process 2.7 Vermicomposting of solid wastes 2.8 Genetically engineered microorganism–based bioremediation 2.9 Factors affecting bioremediation with emphasis on petrochemical and other organic pollutants 2.10 Concentration of pollutant 2.11 Nutrients availability 2.12 Microbial adaptation (acclimatization) 2.13 Bioavailability 2.14 Effect of environmental conditions 2.14.1 Temperature 2.14.2 pH 2.14.3 Oxygen availability 3. Conclusion References 2 - Pollution status and biodegradation of organophosphate pesticides in the environment 1. Introduction 2. Organophosphates and other pesticides 3. Effect of pesticides 3.1 Effects on human health 3.1.1 Acute effect 3.1.2 Chronic effect 3.2 Environmental impact 3.3 Impact on nontarget organisms 3.4 Effects on the microbial diversity of soil 3.5 Pesticide resistance 4. Toxicological mechanism of organophosphates 5. Status of organophosphate pesticide pollution 6. Degradation of organophosphate pesticides 7. Conclusion References 3 - Recent trends in the detection and degradation of organic pollutants 1. Introduction 2. Persistent organic pollutants: health effects and environmental chemistry 3. Method of POPs analysis (soil and water) 3.1 Samples collection, extraction, storage, and preparation 3.2 Conventional techniques 3.3 Analytical techniques for POPs quantification 3.3.1 UV-Vis spectroscopy 3.3.2 Surface-enhanced Raman scattering 4. Methods for POPs degradation 4.1 Biological 4.1.1 Microbial degradation 4.1.1.1 Bacterial degradation 4.1.1.2 Fungal degradation 4.2 Chemical 4.3 Advanced oxidation approaches 5. Conclusions Acknowledgments References 4 - Phytoremediation of organic pollutants: current status and future directions 1. Introduction 2. The process of phytoremediation 3. Physiological and biochemical aspects of phytoremediation 4. Strategies of phytoremediation of organic pollutants 4.1 Direct uptake (direct phytoremediation) 4.2 Phytoremediation explanta 5. Role of enzymes 6. Role of plant-associated microflora 7. Fate and transport of organic contaminants in phytoremediation 8. Genetically engineered organisms for phytoremediation 9. Research and development in phytoremediation 9.1 Current status 9.2 Biotechnological approaches 9.3 Protein engineering 10. Advantages and limitations of phytoremediation 11. Emerging challenges to phytoremediation 12. Conclusion Acknowledgments References Further reading 5 - Bioremediation of dyes from textile and dye manufacturing industry effluent 1. Introduction 2. Importance of characterization of dye-containing wastewater 3. Factors affecting biological removal of textile dyes 4. Microorganisms and mechanism involved in dye bioremediation process 4.1 Bacteria 4.2 Fungi 4.3 Algae 5. Application of enzymes as biocatalyst in dye bioremediation 5.1 Immobilization of biological catalysts 5.2 Potential of biocatalysts for reusability 6. Advancements in bioreactor systems for dye remediation 7. Treatment of dye-containing industrial effluents using genetically modified microorganisms or enzymes 8. Current status of bioreactor application in CETPs of industrial areas for dye removal 9. Microbial fuel cell: a novel system for the remediation of colored wastewater 9.1 Microorganisms used in microbial fuel cells 9.2 Microbial fuel cell configuration and operation 10. Potential of constructed wetlands for the treatment of dye-contaminated effluents 11. Conclusion and suggestions References 6 - Mycoremediation of polycyclic aromatic hydrocarbons 1. Introduction 1.1 PAHs: environmental concern 1.2 Effect of PAHs exposure on environment and human health 1.3 Bioremediation approach 2. Mycoremediation: intact potential 2.1 Ligninolytic fungi 2.2 Nonligninolytic fungi 3. Major enzymes 3.1 Hydrolases 3.1.1 Proteases 3.1.2 Cellulases 3.1.3 Lipases 3.2 Versatile peroxidases 3.3 Ligninolytic enzymes 3.3.1 Laccase 3.3.2 Heme peroxidases 4. Biosurfactant production by fungi and its application in bioremediation 5. Factors affecting growth of fungi 5.1 Temperature 5.2 Humidity 5.3 pH 5.4 Light 5.5 Trace elements 5.6 Aeration 6. Conclusion and future perspective References Further reading 7 - Plant growth–promoting rhizobacteria and their functional role in salinity stress management 1. Introduction 2. Plant growth–promoting rhizobacteria 3. Plant growth–promoting rhizobacteria in salinity stress 3.1 Functional aspects of PGPR under salt stress 4. PGPR and ACC deaminase activity 5. Conclusion References Further reading 8 - Plant growth–promoting bacteria and their role in environmental management 1. Introduction 2. Plant growth–promoting bacteria 3. Xenobiotic compounds and their classification 4. Effect of xenobiotics on the health of human beings 5. Effects of xenobiotics on the plant growth 5.1 Plant growth–promoting bacteria in bioremediation 5.2 Plant growth–promoting bacteria mechanism of xenobiotics degradation 5.3 Microbial degradation of xenobiotic compounds 6. Future prospective Acknowledgments References Further reading 9 - Fungi as potential candidates for bioremediation 1. Introduction 1.1 Fungal enzymes for bioremediation 1.1.1 Extracellular oxidoreductases 1.2 Cell-bound enzymes 1.3 Transferases 2. Fungal bioremediation 2.1 Toxic recalcitrant compound 2.2 Heavy metal 2.3 Municipal solid waste 3. Fungi in bioremediation 3.1 White-rot fungi 3.2 Marine fungi 3.3 Extremophilic fungi 3.4 Symbiotic association of fungi with plants and bacteria 4. Technology advancement 4.1 Conclusions and future prospective References 10.- Cyanobacteria: potential and role for environmental remediation 1. Introduction 1.1 General features of cyanobacteria 1.2 Role of cyanobacteria in agriculture management 1.3 The cyanobacterial potential in environmental development 1.4 Cyanobacteria: role in bioremediation 2. Conclusions and future perspectives Acknowledgments References Further reading 11 - An effective approach for the degradation of phenolic waste: phenols and cresols 1. Introduction 1.1 Cresol production 1.2 Adverse effects of phenols and cresols on the environment and human health 2. Treatment technologies for phenolic compound removal 2.1 Physical method 2.2 Chemical method 2.3 Biological method 2.3.1 Bacteria 2.3.2 Biodegradation mechanism 2.3.3 Aerobic degradation of phenolic waste 2.3.4 Anaerobic degradation of phenolic waste 2.3.5 Fungi biodegradation 2.3.6 Enzymes participating in degradation of phenolic compounds 2.3.7 Biosurfactants 2.3.8 Genetically modified bacteria 3. Factors influencing bioremediation of phenolic waste 3.1 Temperature 3.2 Nutrient availability 3.3 Effect of pH on phenol degradation potential 3.4 Effect of additional carbon sources on phenol degradation potential 3.5 Effect of dissolved oxygen concentration on phenol degradation potential 3.6 Microbial growth kinetics 4. Limitations of biodegradation 5. Photocatalytic degradation 5.1 Photo catalyst and its description 5.2 Mechanism of TiO2 in photocatalytic degradation of phenolic compounds 6. Factors affecting photocatalytic degradation of TiO2 6.1 Light intensity 6.2 Reaction temperature 6.3 Catalyst loading 6.4 pH of solution 6.5 Inorganic ions 6.6 Conclusion Acknowledgments References 12 - Environmental fate of organic pollutants and effect on human health 1. Introduction 1.1 Persistent organic pollutants 1.2 General characteristics of persistent organic pollutants 1.3 Sources of persistent organic pollutants 2. Types of persistent organic pollutants 2.1 Pesticides 2.1.1 Dichlorodiphenyltrichloroethane 2.1.2 Aldrin 2.1.3 Chlordane 2.1.4 Heptachlor 2.1.5 Endrin 2.1.6 Mirex 2.2 Industrial chemicals 2.2.1 Polychlorinated biphenyls 2.2.2 Hexachlorobenzene 2.2.3 Hexachlorobutadiene 2.2.4 Short-chain chlorinated paraffins 2.3 Industrial by-products 2.4 Health and environmental effects of persistent organic pollutants 2.4.1 Endocrine disorder 2.4.2 Reproductive problems 2.4.3 Cancer 2.4.4 Diabetes 2.4.5 Obesity 2.4.6 Cardiovascular diseases 2.5 Environmental effects 2.6 Remediation of persistent organic pollutants 3. Conclusion References Further reading 13 - Rhizospheric remediation of organic pollutants from the soil; a green and sustainable technology for soil clean up 1. Introduction 2. Organic contaminants in soil and their sources 3. Fate of organic pollutants in soil 4. Rhizoremediation: a conventional approach 4.1 Mechanism of Rhizoremediation of organic contaminants 4.1.1 Direct degradation 4.1.2 Increased pollutant bioavailability 4.1.2.1 Production of biosurfactants 4.1.2.2 Biofilms formation 4.1.2.3 Organic acid production 4.1.3 Structural analogy and cometabolism 4.1.4 Energy and nutrient flow 5. Factors affecting rhizoremediation 5.1 Environmental factors 5.1.1 Temperature 5.1.2 pH 5.1.3 Soil organic matter 5.1.4 Low molecular weight organic acids 5.2 Plant species 5.3 Microbial activity 5.4 Bioavailability of pollutants 6. Rhizoremediation potential, challenges, and future perspectives Acknowledgments References Further reading 14 - The role of scanning probe microscopy in bacteria investigations and bioremediation Summary 1. Introduction 2. Bacterial biofilms 3. Scanning probe microscopy is a necessary tool in bioremediation investigations 4. Bacterial electromechanical biosensor 5. Scanning ion-conductance microscopy 6. Nanolithography 6.1 Capillary stereolithography 7. Scanning probe microscopy measurements of bacteria—manual 7.1 Substrate preparation for imaging of bacteria in air 7.2 Substrate preparation for imaging of bacteria in air 7.3 Bacteria preparation 7.4 Cantilever choice 8. Methods 8.1 Atomic force microscope installation 8.2 Atomic force microscopy imaging in air in contact mode 8.3 Atomic force microscopy imaging in air in resonant mode 8.4 Atomic force microscopy imaging in liquids 8.5 Three-dimensional image processing 8.6 Image filtering Quantitative analysis 9. Conclusion Abbreviations Acknowledgments References 15 - Research progress of biodegradable materials in reducing environmental pollution 1. Introduction 2. Biodegradable materials used for environmental protection 2.1 Main types of biodegradable materials 2.1.1 Definition and types of biodegradable materials 2.1.2 Production of natural polymer raw materials and their properties 2.1.3 Production of synthetic biodegradable materials and their properties 2.1.3.1 Polybutylene succinate and PBAT 2.1.3.2 Polycaprolactone 2.1.3.3 Polyvinyl alcohol 2.1.3.4 PLA and its copolymers 2.1.3.5 PHB and its copolymers 2.1.3.6 APC and PPC 2.2 Existing or forthcoming biodegradable materials 2.2.1 Biodegradable plastic films and sheets 2.2.2 Domestic waste collection bag 2.2.3 Transparent window envelope 2.2.4 Fresh packaging film 2.2.5 Forming sheet 2.2.6 Card sheets and films 2.2.7 Film for synthetic paper and label 2.2.8 Shrinkage packaging–related fields 2.2.9 Transparent box 2.2.10 Industrial film 2.2.11 Fruit and vegetable preservation bags 2.2.12 Auxiliary materials in biological recovery 2.3 Application of biodegradable materials 2.3.1 Application in agriculture, forestry, fisheries, and animal husbandry 2.3.2 Application in foamed products 2.3.3 Application in other daily necessities 2.3.4 Application in automobile industry 2.3.5 Application in processing AIDS 2.3.6 Application in medical biodegradable plastics 2.4 Novel biodegradable materials and their applications 2.5 Ideal biodegradable technology for future 3. Conclusion Appendix A: List of abbreviations References Further reading 16 - Genetically engineered bacteria for the degradation of dye and other organic compounds 1. Introduction 2. Constructing genetically engineered microorganisms 3. Detection of genetically engineered microbes 4. Need of genetically engineered microbes 5. Dye degradation by engineered microbes 6. Organic contaminants degradation by genetically engineered microorganisms 7. Agent orange degradation by genetically engineered microorganisms 8. Organophosphate and carbamate degradation by genetically engineered microorganisms 9. Polychlorinated biphenyls degradation by genetically engineered microorganisms 10. Degradation of polycyclic aromatic hydrocarbons 11. Degradation of herbicide 12. Genetically modified endophytic bacteria and phytoremediation 13. Approaches to minimize the risks of genetically engineered microbes 14. Challenges associated with the use of genetically engineered microorganism in bioremediation applications 15. Factors influencing genetically engineered microorganisms 16. Regulation of genetically engineered microorganisms 17. Future perspective 18. Conclusion References Further reading Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z Back Cover