ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Abatement of Environmental Pollutants: Trends and Strategies

دانلود کتاب کاهش آلاینده های محیطی: روندها و استراتژی ها

Abatement of Environmental Pollutants: Trends and Strategies

مشخصات کتاب

Abatement of Environmental Pollutants: Trends and Strategies

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128180951, 9780128180952 
ناشر: Elsevier Science Ltd 
سال نشر: 2019 
تعداد صفحات: 365 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Abatement of Environmental Pollutants: Trends and Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کاهش آلاینده های محیطی: روندها و استراتژی ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کاهش آلاینده های محیطی: روندها و استراتژی ها



کاهش آلاینده‌های محیطی: روندها و استراتژی‌ها به فناوری‌های جدید می‌پردازد و استراتژی‌هایی را برای دانشمندان محیط زیست، میکروبیولوژیست‌ها و بیوتکنولوژیست‌ها ارائه می‌کند تا به حل مشکلات مرتبط با تصفیه فاضلاب صنعتی کمک کنند. این کتاب به خوانندگان کمک می‌کند تا چالش‌های آلودگی را با استفاده از میکروارگانیسم‌ها در فن‌آوری‌های زیست پالایی، از جمله بحث‌هایی در مورد فناوری‌های جهانی که برای تصفیه فاضلاب صنعتی اتخاذ شده‌اند و بخش‌هایی درباره عدم مدیریت صحیح، حل کنند. علاوه بر این، فضای محدود، مقررات دقیق تر دفع زباله و آگاهی عمومی، تکنیک های حاضر را گران و غیرعملی کرده است.

بنابراین، نیاز مبرمی به توسعه فناوری های مدیریت پایدار برای صنایع و شهرداری ها وجود دارد. برای از بین بردن اثرات مخرب آلاینده های آلی بر محیط زیست، اخیراً فناوری های مختلفی برای تخریب آنها کشف شده است.

  • زیست پالایی آلاینده های پتروشیمی مانند بنزن، تولوئن، زایلن، اتیل بنزن و ترکیبات فنلی را پوشش می دهد
  • شامل بحث هایی در مورد میکروب های مهندسی ژنتیک و پتانسیل آنها در کاهش آلودگی است< /li>
  • حاوی اطلاعاتی در مورد باکتری های محرک رشد گیاهان و نقش آنها در مدیریت محیط زیست است

توضیحاتی درمورد کتاب به خارجی

Abatement of Environmental Pollutants: Trends and Strategies addresses new technologies and provides strategies for environmental scientists, microbiologists and biotechnologists to help solve problems associated with the treatment of industrial wastewater. The book helps readers solve pollution challenges using microorganisms in bioremediation technologies, including discussions on global technologies that have been adopted for the treatment of industrial wastewater and sections on the lack of proper management. Moreover, limited space, more stringent waste disposal regulations and public consciousness have made the present techniques expensive and impractical.

Therefore, there is an urgent need to develop sustainable management technologies for industries and municipalities. To remove the damaging effect of organic pollutants on the environment, various new technologies for their degradation have been recently discovered.

  • Covers bioremediation of petrochemical pollutants, such as Benzene, Toluene, Xylene, Ethyl Benzene, and phenolic compound
  • Includes discussions on genetic engineering microbes and their potential in pollution abatement
  • Contains information on plant growth promoting bacteria and their role in environment management


فهرست مطالب

Cover
Abatement of Environmental Pollutants
Copyright
Contributors
1 -
Bioremediation: a sustainable approach for management of environmental contaminants
	1. Introduction
	2. Application of bioremediation for environmental pollutants cleanup
		2.1 Bioremediation strategy for hydrocarbon contaminated water and soil
		2.2 Bioremediation of heavy metal contaminated water
		2.3 Bioremediation of dye contaminated water
			2.3.1 Bioremediation approaches used for dye degradation
				2.3.1.1 Aerobic treatment
				2.3.1.2 Anaerobic treatment
				2.3.1.3 Anoxic treatment
				2.3.1.4 Sequential degradation of dyes
		2.4 Vermi-biofiltration of wastewater
		2.5 Bioremediation of pesticide contamination
		2.6 Removal of pharmaceutical and personal care products by biological degradation processes
			2.6.1 Pure cultures
			2.6.2 Mixed cultures
			2.6.3 Activated sludge process
		2.7 Vermicomposting of solid wastes
		2.8 Genetically engineered microorganism–based bioremediation
		2.9 Factors affecting bioremediation with emphasis on petrochemical and other organic pollutants
		2.10 Concentration of pollutant
		2.11 Nutrients availability
		2.12 Microbial adaptation (acclimatization)
		2.13 Bioavailability
		2.14 Effect of environmental conditions
			2.14.1 Temperature
			2.14.2 pH
			2.14.3 Oxygen availability
	3. Conclusion
	References
2 -
Pollution status and biodegradation of organophosphate pesticides in the environment
	1. Introduction
	2. Organophosphates and other pesticides
	3. Effect of pesticides
		3.1 Effects on human health
			3.1.1 Acute effect
			3.1.2 Chronic effect
		3.2 Environmental impact
		3.3 Impact on nontarget organisms
		3.4 Effects on the microbial diversity of soil
		3.5 Pesticide resistance
	4. Toxicological mechanism of organophosphates
	5. Status of organophosphate pesticide pollution
	6. Degradation of organophosphate pesticides
	7. Conclusion
	References
3 -
Recent trends in the detection and degradation of organic pollutants
	1. Introduction
	2. Persistent organic pollutants: health effects and environmental chemistry
	3. Method of POPs analysis (soil and water)
		3.1 Samples collection, extraction, storage, and preparation
		3.2 Conventional techniques
		3.3 Analytical techniques for POPs quantification
			3.3.1 UV-Vis spectroscopy
			3.3.2 Surface-enhanced Raman scattering
	4. Methods for POPs degradation
		4.1 Biological
			4.1.1 Microbial degradation
				4.1.1.1 Bacterial degradation
				4.1.1.2 Fungal degradation
		4.2 Chemical
		4.3 Advanced oxidation approaches
	5. Conclusions
	Acknowledgments
	References
4 -
Phytoremediation of organic pollutants: current status and future directions
	1. Introduction
	2. The process of phytoremediation
	3. Physiological and biochemical aspects of phytoremediation
	4. Strategies of phytoremediation of organic pollutants
		4.1 Direct uptake (direct phytoremediation)
		4.2 Phytoremediation explanta
	5. Role of enzymes
	6. Role of plant-associated microflora
	7. Fate and transport of organic contaminants in phytoremediation
	8. Genetically engineered organisms for phytoremediation
	9. Research and development in phytoremediation
		9.1 Current status
		9.2 Biotechnological approaches
		9.3 Protein engineering
	10. Advantages and limitations of phytoremediation
	11. Emerging challenges to phytoremediation
	12. Conclusion
	Acknowledgments
	References
	Further reading
5 -
Bioremediation of dyes from textile and dye manufacturing industry effluent
	1. Introduction
	2. Importance of characterization of dye-containing wastewater
	3. Factors affecting biological removal of textile dyes
	4. Microorganisms and mechanism involved in dye bioremediation process
		4.1 Bacteria
		4.2 Fungi
		4.3 Algae
	5. Application of enzymes as biocatalyst in dye bioremediation
		5.1 Immobilization of biological catalysts
		5.2 Potential of biocatalysts for reusability
	6. Advancements in bioreactor systems for dye remediation
	7. Treatment of dye-containing industrial effluents using genetically modified microorganisms or enzymes
	8. Current status of bioreactor application in CETPs of industrial areas for dye removal
	9. Microbial fuel cell: a novel system for the remediation of colored wastewater
		9.1 Microorganisms used in microbial fuel cells
		9.2 Microbial fuel cell configuration and operation
	10. Potential of constructed wetlands for the treatment of dye-contaminated effluents
	11. Conclusion and suggestions
	References
6 -
Mycoremediation of polycyclic aromatic hydrocarbons
	1. Introduction
		1.1 PAHs: environmental concern
		1.2 Effect of PAHs exposure on environment and human health
		1.3 Bioremediation approach
	2. Mycoremediation: intact potential
		2.1 Ligninolytic fungi
		2.2 Nonligninolytic fungi
	3. Major enzymes
		3.1 Hydrolases
			3.1.1 Proteases
			3.1.2 Cellulases
			3.1.3 Lipases
		3.2 Versatile peroxidases
		3.3 Ligninolytic enzymes
			3.3.1 Laccase
			3.3.2 Heme peroxidases
	4. Biosurfactant production by fungi and its application in bioremediation
	5. Factors affecting growth of fungi
		5.1 Temperature
		5.2 Humidity
		5.3 pH
		5.4 Light
		5.5 Trace elements
		5.6 Aeration
	6. Conclusion and future perspective
	References
	Further reading
7 -
Plant growth–promoting rhizobacteria and their functional role in salinity stress management
	1. Introduction
	2. Plant growth–promoting rhizobacteria
	3. Plant growth–promoting rhizobacteria in salinity stress
		3.1 Functional aspects of PGPR under salt stress
	4. PGPR and ACC deaminase activity
	5. Conclusion
	References
	Further reading
8 -
Plant growth–promoting bacteria and their role in environmental management
	1. Introduction
	2. Plant growth–promoting bacteria
	3. Xenobiotic compounds and their classification
	4. Effect of xenobiotics on the health of human beings
	5. Effects of xenobiotics on the plant growth
		5.1 Plant growth–promoting bacteria in bioremediation
		5.2 Plant growth–promoting bacteria mechanism of xenobiotics degradation
		5.3 Microbial degradation of xenobiotic compounds
	6. Future prospective
	Acknowledgments
	References
	Further reading
9 -
Fungi as potential candidates for bioremediation
	1. Introduction
		1.1 Fungal enzymes for bioremediation
			1.1.1 Extracellular oxidoreductases
		1.2 Cell-bound enzymes
		1.3 Transferases
	2. Fungal bioremediation
		2.1 Toxic recalcitrant compound
		2.2 Heavy metal
		2.3 Municipal solid waste
	3. Fungi in bioremediation
		3.1 White-rot fungi
		3.2 Marine fungi
		3.3 Extremophilic fungi
		3.4 Symbiotic association of fungi with plants and bacteria
	4. Technology advancement
		4.1 Conclusions and future prospective
	References
10.-
Cyanobacteria: potential and role for environmental remediation
	1. Introduction
		1.1 General features of cyanobacteria
		1.2 Role of cyanobacteria in agriculture management
		1.3 The cyanobacterial potential in environmental development
		1.4 Cyanobacteria: role in bioremediation
	2. Conclusions and future perspectives
	Acknowledgments
	References
	Further reading
11 -
An effective approach for the degradation of phenolic waste: phenols and cresols
	1. Introduction
		1.1 Cresol production
		1.2 Adverse effects of phenols and cresols on the environment and human health
	2. Treatment technologies for phenolic compound removal
		2.1 Physical method
		2.2 Chemical method
		2.3 Biological method
			2.3.1 Bacteria
			2.3.2 Biodegradation mechanism
			2.3.3 Aerobic degradation of phenolic waste
			2.3.4 Anaerobic degradation of phenolic waste
			2.3.5 Fungi biodegradation
			2.3.6 Enzymes participating in degradation of phenolic compounds
			2.3.7 Biosurfactants
			2.3.8 Genetically modified bacteria
	3. Factors influencing bioremediation of phenolic waste
		3.1 Temperature
		3.2 Nutrient availability
		3.3 Effect of pH on phenol degradation potential
		3.4 Effect of additional carbon sources on phenol degradation potential
		3.5 Effect of dissolved oxygen concentration on phenol degradation potential
		3.6 Microbial growth kinetics
	4. Limitations of biodegradation
	5. Photocatalytic degradation
		5.1 Photo catalyst and its description
		5.2 Mechanism of TiO2 in photocatalytic degradation of phenolic compounds
	6. Factors affecting photocatalytic degradation of TiO2
		6.1 Light intensity
		6.2 Reaction temperature
		6.3 Catalyst loading
		6.4 pH of solution
		6.5 Inorganic ions
		6.6 Conclusion
	Acknowledgments
	References
12 -
Environmental fate of organic pollutants and effect on human health
	1. Introduction
		1.1 Persistent organic pollutants
		1.2 General characteristics of persistent organic pollutants
		1.3 Sources of persistent organic pollutants
	2. Types of persistent organic pollutants
		2.1 Pesticides
			2.1.1 Dichlorodiphenyltrichloroethane
			2.1.2 Aldrin
			2.1.3 Chlordane
			2.1.4 Heptachlor
			2.1.5 Endrin
			2.1.6 Mirex
		2.2 Industrial chemicals
			2.2.1 Polychlorinated biphenyls
			2.2.2 Hexachlorobenzene
			2.2.3 Hexachlorobutadiene
			2.2.4 Short-chain chlorinated paraffins
		2.3 Industrial by-products
		2.4 Health and environmental effects of persistent organic pollutants
			2.4.1 Endocrine disorder
			2.4.2 Reproductive problems
			2.4.3 Cancer
			2.4.4 Diabetes
			2.4.5 Obesity
			2.4.6 Cardiovascular diseases
		2.5 Environmental effects
		2.6 Remediation of persistent organic pollutants
	3. Conclusion
	References
	Further reading
13 -
Rhizospheric remediation of organic pollutants from the soil; a green and sustainable technology for soil clean up
	1. Introduction
	2. Organic contaminants in soil and their sources
	3. Fate of organic pollutants in soil
	4. Rhizoremediation: a conventional approach
		4.1 Mechanism of Rhizoremediation of organic contaminants
			4.1.1 Direct degradation
			4.1.2 Increased pollutant bioavailability
				4.1.2.1 Production of biosurfactants
				4.1.2.2 Biofilms formation
				4.1.2.3 Organic acid production
			4.1.3 Structural analogy and cometabolism
			4.1.4 Energy and nutrient flow
	5. Factors affecting rhizoremediation
		5.1 Environmental factors
			5.1.1 Temperature
			5.1.2 pH
			5.1.3 Soil organic matter
			5.1.4 Low molecular weight organic acids
		5.2 Plant species
		5.3 Microbial activity
		5.4 Bioavailability of pollutants
	6. Rhizoremediation potential, challenges, and future perspectives
	Acknowledgments
	References
	Further reading
14 -
The role of scanning probe microscopy in bacteria investigations and bioremediation
	Summary
	1. Introduction
	2. Bacterial biofilms
	3. Scanning probe microscopy is a necessary tool in bioremediation investigations
	4. Bacterial electromechanical biosensor
	5. Scanning ion-conductance microscopy
	6. Nanolithography
		6.1 Capillary stereolithography
	7. Scanning probe microscopy measurements of bacteria—manual
		7.1 Substrate preparation for imaging of bacteria in air
		7.2 Substrate preparation for imaging of bacteria in air
		7.3 Bacteria preparation
		7.4 Cantilever choice
	8. Methods
		8.1 Atomic force microscope installation
		8.2 Atomic force microscopy imaging in air in contact mode
		8.3 Atomic force microscopy imaging in air in resonant mode
		8.4 Atomic force microscopy imaging in liquids
		8.5 Three-dimensional image processing
		8.6 Image filtering
		Quantitative analysis
	9. Conclusion
	Abbreviations
	Acknowledgments
	References
15 -
Research progress of biodegradable materials in reducing environmental pollution
	1. Introduction
	2. Biodegradable materials used for environmental protection
		2.1 Main types of biodegradable materials
			2.1.1 Definition and types of biodegradable materials
			2.1.2 Production of natural polymer raw materials and their properties
			2.1.3 Production of synthetic biodegradable materials and their properties
				2.1.3.1 Polybutylene succinate and PBAT
				2.1.3.2 Polycaprolactone
				2.1.3.3 Polyvinyl alcohol
				2.1.3.4 PLA and its copolymers
				2.1.3.5 PHB and its copolymers
				2.1.3.6 APC and PPC
		2.2 Existing or forthcoming biodegradable materials
			2.2.1 Biodegradable plastic films and sheets
			2.2.2 Domestic waste collection bag
			2.2.3 Transparent window envelope
			2.2.4 Fresh packaging film
			2.2.5 Forming sheet
			2.2.6 Card sheets and films
			2.2.7 Film for synthetic paper and label
			2.2.8 Shrinkage packaging–related fields
			2.2.9 Transparent box
			2.2.10 Industrial film
			2.2.11 Fruit and vegetable preservation bags
			2.2.12 Auxiliary materials in biological recovery
		2.3 Application of biodegradable materials
			2.3.1 Application in agriculture, forestry, fisheries, and animal husbandry
			2.3.2 Application in foamed products
			2.3.3 Application in other daily necessities
			2.3.4 Application in automobile industry
			2.3.5 Application in processing AIDS
			2.3.6 Application in medical biodegradable plastics
		2.4 Novel biodegradable materials and their applications
		2.5 Ideal biodegradable technology for future
	3. Conclusion
	Appendix A: List of abbreviations
	References
	Further reading
16 -
Genetically engineered bacteria for the degradation of dye and other organic compounds
	1. Introduction
	2. Constructing genetically engineered microorganisms
	3. Detection of genetically engineered microbes
	4. Need of genetically engineered microbes
	5. Dye degradation by engineered microbes
	6. Organic contaminants degradation by genetically engineered microorganisms
	7. Agent orange degradation by genetically engineered microorganisms
	8. Organophosphate and carbamate degradation by genetically engineered microorganisms
	9. Polychlorinated biphenyls degradation by genetically engineered microorganisms
	10. Degradation of polycyclic aromatic hydrocarbons
	11. Degradation of herbicide
	12. Genetically modified endophytic bacteria and phytoremediation
	13. Approaches to minimize the risks of genetically engineered microbes
	14. Challenges associated with the use of genetically engineered microorganism in bioremediation applications
	15. Factors influencing genetically engineered microorganisms
	16. Regulation of genetically engineered microorganisms
	17. Future perspective
	18. Conclusion
	References
	Further reading
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Back Cover




نظرات کاربران