ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Ab initio Calculation Tutorial: For Materials Analysis, Informatics and Design

دانلود کتاب آموزش محاسبه Ab initio: برای تجزیه و تحلیل مواد، انفورماتیک و طراحی

Ab initio Calculation Tutorial: For Materials Analysis, Informatics and Design

مشخصات کتاب

Ab initio Calculation Tutorial: For Materials Analysis, Informatics and Design

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 981990918X, 9789819909186 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 284
[285] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Ab initio Calculation Tutorial: For Materials Analysis, Informatics and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آموزش محاسبه Ab initio: برای تجزیه و تحلیل مواد، انفورماتیک و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
	Tutorial Environment
	Cost Estimation for Simulation Environment
Acknowledgements
Contents
Acronyms
Part ITracing the Whole Picture First
1 Introduction
	1.1 What Is ab initio Electronic Structure Calculation  in Practice?
		1.1.1 What Solution It Provides?
		1.1.2 What Is Calculated?
	1.2 What May Be Confusing to Beginners
		1.2.1 Not What One Would Normally Expect from a Simulation Study
		1.2.2 Hierarchical Structure of Scientific Pictures
		1.2.3 Kernel Calculation and Outer Loop
	1.3 What Is the Goal to Aim at as a Practitioner?
		1.3.1 Why Learn the Kernel Calculation Part?
		1.3.2 Tips for Surveying Preceding Studies
		1.3.3 Finding a Tracing Calculation Task
		1.3.4 Learning Approach to Be Avoided
		1.3.5 Goal to Aim at for Beginners
	1.4 Why It Is an Opportune Time to Jump in
		1.4.1 Affinity with Data Science
		1.4.2 Outer Loop Linked to Artificial Intelligence
		1.4.3 Confluence with Computational Thermodynamics
		1.4.4 Materials Genome
		1.4.5 Chance for Latecomers
	1.5 Contents of the Following Chapters
		1.5.1 Policy on Content
		1.5.2 Teaching with Command Line
		1.5.3 Machine Dependence of the Tutorial Environment
2 Preparing Tutorial Environments
	2.1 Minimum Guide for Linux Beginners
	2.2 Preparing Terminal Environment
		2.2.1 Assembling RaspberryPi
		2.2.2 Getting Used to Shortcuts
		2.2.3 Preparing Terminal Environment
		2.2.4 Hierarchical Structure of Directories
	2.3 Installation of Required Tools
		2.3.1 Network Installation Using Sudo Command
		2.3.2 Installing Operation
		2.3.3 Remote Connection from Your Familiar PC
	2.4 Setting Up Working Directory
		2.4.1 Preparing Working Directory
		2.4.2 Obtaining Tutorial File Sets
		2.4.3 Setup Alias File
	2.5 Tips for Successful Learning
		2.5.1 Cease Habit of Handwritten Notebook
		2.5.2 Tips to Prevent Discouraging Your Learning
3 Sequence of Computational Procedure
	3.1 What Is the Self-Consistent Calculation
	3.2 Preparing Input Files
		3.2.1 How to Prepare Structure/Geometry Files
		3.2.2 Obtaining Structure Files
		3.2.3 Conversion of Structure Format
		3.2.4 Preparing Pseudopotentials
	3.3 SCF Calculation
		3.3.1 Preparing for Calculations
		3.3.2 Executing SCF Calculations
		3.3.3 Checking the Results
	3.4 Quick Check Using Plotter
		3.4.1 Useful Commands for Text Editing
		3.4.2 Script to Utilize of Past Knowledge
		3.4.3 Using a Plotter
	3.5 Calculating Electronic Structure
		3.5.1 NSCF Calculations for DOS
		3.5.2 Depicting DOS
		3.5.3 Depicting Partial DOS
		3.5.4 Depicting DOS Using xFroggie
	3.6 Depicting Band Dispersion
		3.6.1 NSCF Calculation for Band Dispersion
		3.6.2 Preparing Band Dispersion Data Using ``bands.x''
		3.6.3 Depicting Band Dispersion Using ``plotband.x''
		3.6.4 Depicting Band Dispersion Using ``xFroggie''
	3.7 Calculating Properties as a Quick Check
Part IIToward Understanding Theoretical Background
4 Determining Computational Conditions
	4.1 Why the Determination of Calculation Conditions  is Important?
		4.1.1 To Get Reliable Predictions
		4.1.2 Applying Identical Condition to Predict Series Trend
	4.2 Parameters for Accuracy via Resolution
		4.2.1 k-Mesh
		4.2.2 Cutoff Energy
		4.2.3 Physical Image of Truncation
	4.3 Procedure to Determine the Resolution Specifications
		4.3.1 Determining Cutoff Energy
		4.3.2 Determining Optimal k-Mesh
	4.4 Choice of Pseudopotentials
		4.4.1 Specification of Pseudopotentials
		4.4.2 Dependence on the Pseudopotential Choice
	4.5 Choice of Exchange-Correlation Potentials
		4.5.1 Starting from Rough Description
		4.5.2 Dependence on Exchange-Correlation Potentials
	4.6 How the Computational Conditions Affect
		4.6.1 How to Read the Results
		4.6.2 Importance to Understand the Dependence  on the Computational Conditions
5 Points to Understand in Background Theories
	5.1 Significance to Learn Kernel Calculation
		5.1.1 Kernel Calculation as a Seed
		5.1.2 Geometrical Optimization
		5.1.3 Why Kernel Calculations with Command Line
	5.2 Tips to Understand Kernel Calculation
		5.2.1 Categorizing Input Parameters
		5.2.2 Input Parameters to Be Understood First
	5.3 Overview of Density Functional Theory: For Understanding …
		5.3.1 Formulation of Our Problem
		5.3.2 Introducing Density Functional Theory
		5.3.3 Exchange–Correlation Potentials
		5.3.4 Kohn–Sham Equation
		5.3.5 Self-consistent Field Form
		5.3.6 Variation of Exchange–Correlation Functionals
		5.3.7 Further Notes on Exchange–Correlation Potentials
	5.4 Basis Set Functions
		5.4.1 Basis Set Expansion
		5.4.2 Basis Set Choice Based on Physical Perspective
		5.4.3 Basis Sets in Modern Context
		5.4.4 Cost Reduction via Basis Set
	5.5 Pseudopotentials
		5.5.1 Core/Valence Partitioning
		5.5.2 Practical Categorizing Pseudopotentials
		5.5.3 Two More Practical Specs of Pseudopotentials
	5.6 How to Choose Appropriate Package for Your Project
		5.6.1 Starting with Basis Sets
		5.6.2 Tips for the Choice
		5.6.3 Kernel, Package, and Wrapper
Part IIIAdvanced Topics
6 Toward Practical Applications
	6.1 Toward Advanced Geometries
		6.1.1 Construction of Geometries
		6.1.2 Finite Size Error
	6.2 Toward Evaluations of Advanced Properties
		6.2.1 Sorting Out the Form of Computational Evaluations
		6.2.2 Prediction Based on Data Correlation
	6.3 What the Speed of Simulation Brings
		6.3.1 High-Throughput Handling
		6.3.2 Workflow Automation
		6.3.3 Quantum Monte Carlo Electronic Structure Calculations
		6.3.4 What the Simulation Speed Brings
7 Materials Informatics Based on Structural Search
	7.1 Formulation of Materials Search
		7.1.1 Descriptors to Introduce Search-Space
		7.1.2 For Efficiency to Sample Search-Space
		7.1.3 Regression to Describe Properties
	7.2 Search Methods
		7.2.1 Particle Swarm Optimization
		7.2.2 Genetic Algorithm
		7.2.3 Beysian Search
	7.3 Regression Using Descriptors
		7.3.1 Binary Tree Regression
		7.3.2 Regression Using Neuralnetwork
		7.3.3 Evaluating and Improving Regressions
	7.4 Structural Search
		7.4.1 Structural Search Using Regression
		7.4.2 How ab Initio Calculation Used
8 Tips in Project Management
	8.1 How to Drive the Collaboration Effectively
		8.1.1 The Age of Experimental Practitioners Running Their Own Calculations
		8.1.2 What Makes it Different from a Simple Analytical Collaboration
		8.1.3 How to do a Literature Search
		8.1.4 How to Perform Tracing Studies
	8.2 Tips for Successful Collaboration
		8.2.1 Standardizing any Format
		8.2.2 Pitfalls in Simulation Collaboration
		8.2.3 Pitfalls in Reporting and Consulting
	8.3 Tips to Train Practitioners
		8.3.1 Computational Operations Are Not the Hard Issue to Non-experts
		8.3.2 Aspects of Work Sharing
9 Appendix A: A Short Course of Linux Command Operation
	9.1 Getting Familiar with Directory Structure
		9.1.1 Directory Structure Instead of Folders
		9.1.2 Moving Between Directories
		9.1.3 File Operations
		9.1.4 Editting Files
	9.2 Use It More Conveniently
		9.2.1 Using Alias
		9.2.2 Pipe and Redirect
		9.2.3 Activating Alias Automatically
10 Appendix B: Supplementals to the Tutorial
	10.1 Generating k-Point Path
	10.2 Improving SCF Convergence
		10.2.1 Sloshing and Smearing
		10.2.2 Convergence Controlled by Smearing Parameter
		10.2.3 Convergence Acceleration by Mixing and Resume Calculation
11 Appendix C: Band Theory
	11.1 Overview
		11.1.1 Fundamental Information to Understand Materials Response
		11.1.2 Mode Separation Used for the Analysis
		11.1.3 Symmetric Transformation of Wavefunctions
		11.1.4 Indexing Energy Levels of Periodic Systems
		11.1.5 Concept of Elementary Excitations
		11.1.6 Band Dispersion Gives What Information?
	11.2 Mode Separation and Diagonalization
		11.2.1 Introduction of Mode Separation
		11.2.2 Prescription of Mode Separation
		11.2.3 Mode Separation for Symmetric Operations
		11.2.4 Fourier Expansion as a Mode-Separation
	11.3 Index for Symmetric Operations and Energy
		11.3.1 Representation of Symmetry Using Commutation Relation
		11.3.2 Energy Index Sorted by Symmetry
	11.4 Wavevector, Reciprocal Lattice, Brillouin Zone
		11.4.1 Imagine the Wave Number as a Picture
		11.4.2 Introducing Reciprocal Lattice
		11.4.3 Bloch Function
	11.5 Twisted Boundary Condition
		11.5.1 Mesh Shift
		11.5.2 Twisting Average
		11.5.3 A Rough Description of Polarization Theory
12 Appendix D: A Brief Explanation of DFT+U
	12.1 The Problem of Damage to Self-interaction Cancellation
		12.1.1 Cancellation of Self-interaction
		12.1.2 Damage to Self-interaction Cancellation
	12.2 DFT+U Method
		12.2.1 Problem of Bandgap Underestimation
		12.2.2 Mechanism of Gap Underestimation
		12.2.3 Cancellation of Self-interaction Depending on the Locality
		12.2.4 Strategies to Cope with Gap Underestimation
		12.2.5 Strategy in DFT+U
		12.2.6 Summary/Possible Misleadings on DFT+U
	12.3 Universal Consequences Derived From Bare Interaction
13 Appendix E: Appendix for Data Scientic Topics
	13.1 Bayesian Update of the Parameters of Distribution
	13.2 Sparse Modeling by Norm Regularization




نظرات کاربران