دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: معادلات دیفرانسیل ویرایش: نویسندگان: Michael K. Keane سری: ISBN (شابک) : 0130304174, 9780130304179 ناشر: Prentice Hall سال نشر: 2001 تعداد صفحات: 529 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب A Very Applied First Course in Partial Differential Equations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اولین دوره بسیار کاربردی در معادلات دیفرانسیل جزئی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بسیار خواندنی نشان می دهد که چگونه ریاضیات به طور مستقیم در زمینه های مختلف تحصیلی کاربرد دارد. با نشان دادن اینکه چگونه معادلات در دنیای واقعی معنای واقعی دارند، بر مسائلی که نیاز به ترجمه فیزیکی به ریاضی دارند، تمرکز می کند. انتگرال های فوریه را پوشش می دهد و روش های تبدیل، مسائل کلاسیک PDE، مسئله ارزش ویژه Sturm-Liouville و بسیاری موارد دیگر را پوشش می دهد. برای خوانندگان علاقه مند به معادلات دیفرانسیل جزئی.
This extremely readable book illustrates how mathematics applies directly to different fields of study. Focuses on problems that require physical to mathematical translations, by showing readers how equations have actual meaning in the real world. Covers fourier integrals, and transform methods, classical PDE problems, the Sturm-Liouville Eigenvalue problem, and much more. For readers interested in partial differential equations.
Cover Front Matter A Very Applied First Course in Partial Differential Equations © 2002 Prentice-Hal ISBN: 0-13-030417-4 QA377.K38 2002 515\'.353-dc21 LCCN 2001040032 Dedication Contents List of Figures Preface Course Outline Acknowledgments Chapter 1 Introduction EXERCISES 1 Chapter 2 The One-Dimensional Heat Equation 2.1 INTRODUCTION 2.2 DERIVATION OF HEAT CONDUCTION IN A ONE-DIMENSIONAL ROD 2.2.1 Derivation of the Mathematical Model 2.2.2 Initial Temperature EXERCISES 2.2 2.3 BOUNDARY CONDITIONS FOR A ONE-DIMENSIONAL ROD 2.3.1 Boundary Conditions of the First Kind 2.3.2 Boundary Conditions of the Second Kind 2.3.3 Boundary Conditions of the Third Kind EXERCISES 2.3 2.4 THE MAXIMUM PRINCIPLE AND UNIQUENESS EXERCISES 2.4 2.5 STEADY-STATE TEMPERATURE DISTRIBUTION EXERCISES 2.5 Chapter 3 The One-Dimensional Wave Equation 3.1 INTRODUCTION 3.2 DERIVATION OF THE ONE-DIMENSIONAL WAVE EQUATION EXERCISES 3.2 3.3 BOUNDARY CONDITIONS 3.3.1 Boundary Conditions of the First Kind 3.3.2 Boundary Conditions of the Second Kind 3.3.3 Boundary Conditions of the Third Kind EXERCISES 3.3 3.4 CONSERVATION OF ENERGY FOR A VIBRATING STRING EXERCISES 3.4 3.5 FIRST-ORDER PDES: METHOD OF CHARACTERISTICS EXERCISES 3.5 3.6 D\'ALEMBERT\'S SOLUTION TO THE ONE-DIMENSIONAL WAVE EQUATION EXERCISES 3.6 Chapter 4 The Essentials of Fourier Series 4.1 INTRODUCTION 4.2 ELEMENTS OF LINEAR ALGEBRA 4.2.1 Vector Space 4.2.2 Linear Dependence, Linear Independence, and Basis 4.2.3 Orthogonality and Inner Product 4.2.4 Eigenvalues and Eigenvectors 4.2.5 Significance EXERCISES 4.2 4.3 A NEW SPACE: THE FUNCTION SPACE OF PIECEWISE SMOOTH FUNCTIONS 4.3.1 Inner Product, Orthogonality, and Basis in a Function Space 4.3.2 Definition of Trigonometric Fourier series 4.3.3 Fourier series Representation of P iecewise Smooth Functions EXERCISES 4.3 4.4 EVEN AND ODD FUNCTIONS AND FOURIER SERIES EXERCISES 4.4 Chapter 5 Separation of Variables: The Homogeneous Problem 5.1 INTRODUCTION 5.2 OPERATORS: LINEAR AND HOMOGENEOUS EQUATIONS 5.2.1 Linear Operators 5.2.2 Linear Equations EXERCISES 5.2 5.3 SEPARATION OF VARIABLES: THE HEAT EQUATION IN A ONE-DIMENSIONAL ROD 5.3.1 Spatial Problem Solution 5.3.2 Time Problem Solution 5.3.3 The Complete Solution EXERCISES 5.3 5.4 SEPARATION OF VARIABLES: THE WAVE EQUATION IN A ONE-DIMENSIONAL STRING 5.4.1 Spatial Problem Solution 5.4.2 Time Problem Solution 5.4.3 The Complete Solution EXERCISES 5.4 5.5 THE MULTIDIMENSIONAL SPATIAL PROBLEM 5.5.1 Spatial Problem for X (x) 5.5.2 Spatial Problem for Y(y) 5.5.3 Time Problem 5.5.4 The Complete Solution EXERCISES 5.5 5.6 LAPLACE\'S EQUATION 5.6.1 An Electrostatics Derivation of Laplace\'s Equatio 5.6.2 Uniqueness of Solution 5.6.3 Laplace\'s Equation in Cartesian Coordinate System EXERCISES 5.6 Chapter 6 The Calculus of Fourier Series 6.1 INTRODUCTION 6.2 FOURIER SERIES REPRESENTATION OF A FUNCTION: FOURIER SERIES AS A FUNCTION 6.3 DIFFERENTIATION OF FOURIER SERIES EXERCISES 6.3 6.4 INTEGRATION OF FOURIER SERIES EXERCISES 6.4 6.5 FOURIER SERIES AND THE GIBBS PHENOMENON EXERCISES 6.5 Chapter 7 Separation of Variables: The Nonhomogeneous Problem 7.1 INTRODUCTION 7.2 NONHOMOGENEOUS PDES WITH HOMOGENEOUS BCS EXERCISES 7.2 7.3 HOMOGENEOUS PDE WITH NONHOMOGENEOUS BCS 7.3.1 Homogeneous PDE Nonhomogeneous Constant BCs 7.3.2 Homogeneous PDE Nonhomogeneous Variable BCs EXERCISES 7.3 7.4 NONHOMOGENEOUS PDE AND BCs EXERCISES 7.4 7.5 SUMMARY Chapter 8 The Sturm-Liouville Eigenvalue Problem 8.1 INTRODUCTION 8.2 DEFINITION OF THE STURM-LIOUVILLE EIGENVALUE PROBLEM EXERCISES 8.2 8.3 RAYLEIGH QUOTIENT EXERCISES 8.3 8.4 THE GENERAL PDE EXAMPLE EXERCISES 8.4 8.5 PROBLEMS INVOLVING HOMOGENEOUS BCS OF THE THIRD KIND EXERCISES 8.5 Chapter 9 Solution of Linear Homogeneous Variable-Coefficient ODE 9.1 INTRODUCTION 9.2 SOME FACTS ABOUT THE GENERAL SECOND-ORDER ODE EXERCISES 9.2 9.3 EULER\'S EQUATION EXERCISES 9.3 9.4 BRIEF REVIEW OF POWER SERIES EXERCISES 9.4 9.5 THE POWER SERIES SOLUTION METHOD EXERCISES 9.5 9.6 LEGENDER\'S EQUATION AND LEGENDRE POLYNOMIALS EXERCISES 9.6 9.7 METHOD OF FROBENIUS AND BESSEL\'S EQUATION EXERCISES 9.7 Chapter 10 Classical PDE Problems 10.1 INTRODUCTION 10.2 LAPLACE\'S EQUATION 10.2.1 Laplace\'s equation in the Polar Coordinate System 10.2.2 Laplace\'s equation in the Spherical Coordinate System EXERCISES 10.2 10.3 TRANSVERSE VIBRATIONS OF A THIN BEAM 10.3.1 Derivation of the Beam Equation 10.3.2 Transverse Vibrations of a Simply Supported Thin Beam EXERCISES 10.3 10.4 HEAT CONDUCTION IN A CIRCULAR PLATE EXERCISES 10.4 10.5 SCHRODINGER\'S EQUATION EXERCISES 10.5 10.6 THE TELEGRAPHER\'S EQUATION 10.6.1 Development of the Telegrapher\'s Equation 10.6.2 Application of the Telegrapher\'s Equation to a Neuron EXERCISES 10.6 10.7 INTERESTING PROBLEMS IN DIFFUSION EXERCISES 10.7 Chapter 11 Fourier Integrals and Transform Methods 11.1 INTRODUCTION 11.2 THE FOURIER INTEGRAL 11.2.1 Development of the Fourier Integral 11.2.2 The Fourier Sine and Cosine Integrals EXERCISES 11.2 11.3 THE LAPLACE TRANSFORM 11.3.1 Laplace transform Solution Method of ODEs 11.3.2 The Error Function 11.3.3 Laplace Transform Solution Method of PDEs EXERCISES 11.3 11.4 THE FOURIER TRANSFORM 11.4.1 Fourier Cosine and Sine Transforms 11.4.2 Fourier Transform Theorems EXERCISES 11.4 11.5 FOURIER TRANSFORM SOLUTION METHOD OF PDES EXERCISES 11.5 Back Matter Appendix A Summary of the Spatial Problem Appendix B Proofs of Related Theorems B.1 THEOREMS FROM CHAPTER 2 B.1.1 Leibniz\'s Formula B.1.2 Maximum-Minimum Theorem B.2 THEOREMS FROM CHAPTER 4 B.2.1 Eigenvectors of Distinct Eigenvalues Are Linearly Independen B.2.2 Eigenvectors of Distinct Eigenvalues of an n by n Matrix Form a Basis for Rn B.3 THEOREM FROM CHAPTER 5 Appendix C Basics from Ordinary Differential Equations C.1 SOME SOLUTION METHODS FOR FIRST-ORDER ODES C.1.1 First-Order ODE Where k(t) Is a Constant C.1.2 First-Order ODE Where k(t) Is a Function C.2 SOME SOLUTION METHODS OF SECOND-ORDER ODES C.2.1 Second-Order Linear Homogeneous ODES C.2.2 Second-Order Linear Nonhomogeneous ODES Appendix D Mathematical Notation Appendix E Summary of Thermal Diffusivity of Common Materials Appendix F Tables of Fourier and LaplaceTransforms F.1 TABLES OF FOURIER, FOURIER COSINE, AND FOURIER SINE TRANSFORMS F.2 TABLE OF LAPLACE TRANSFORMS Bibliography Index Back Cover