دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: A. C. Sharma
سری:
ISBN (شابک) : 0367723441, 9780367723446
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 430
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 Mb
در صورت تبدیل فایل کتاب A Textbook on Modern Quantum Mechanics: A Textbook on Modern Quantum Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب درسی مکانیک کوانتومی مدرن: کتاب درسی مکانیک کوانتومی مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Preface Acknowledgments About the Author 1. Introduction to Quantum Mechanics 1.1. Blackbody Radiation and Planck’s Hypothesis 1.2. Photoelectric Effect 1.3. Bohr’s Atomic Model and the Hydrogen Atom 1.4. Compton Scattering of Photons 1.5. De Broglie Hypothesis 1.6. Pauli Exclusion Principle 1.7. Schrödinger Wave Equation 1.8. Born Interpretation of Wave Function 1.9. Heisenberg Uncertainty Principle 1.10. Davisson and Germer Wave Properties of Electrons 1.11. Bohr-Sommerfeld Quantization Condition 1.12. Correspondence Principle 1.13. Heisenberg Quantum Mechanics 1.14. Dirac Theory of Quantum Mechanics 1.15. Important Quantum Mechanical Parameters in SI Units 1.16. Solved Examples 1.17. Exercises 2. Wave Mechanics and Its Simple Applications 2.1. Schrödinger Equation 2.2. Bound States and Scattering States 2.3. Probability Density, Probability Current, and Expectation Value 2.4. Simple Applications of Time-Independent Schrödinger Equation 2.4.1. Free Particle Motion 2.4.2. Infinite Potential Well (Particle in a Box) 2.4.3. The Finite Potential Well 2.4.4. Step Potential 2.4.5. Finite Potential Barrier and Tunneling 2.4.6. Relevance of Free Particle, Potential Wells, and Potential Barriers 2.5. Periodic Solids and their Band Structures 2.5.1. The Kronig-Penney Model 2.5.2. Confined States in Quantum Wells, Wires, and Dots 2.6. Solved Examples 2.7. Exercises 3. Matrix Formulation of Quantum Mechanics 3.1. Matrices and their Basic Algebra 3.2. Bra and Ket Notations 3.3. Vectors and Vector Space 3.3.1. Linearly Independent Vectors 3.3.2. Orthogonal and Orthonormal Vectors 3.3.3. Abstract Representation of a Vector 3.3.4. Outer Product of Vectors 3.4. Gram-Schmidt Method for Orthogonalization of Vectors 3.5. Schwarz Inequality 3.6. Linear Transformation of Vectors 3.6.1. Eigenvalues and Eigenvectors of a Matrix 3.6.2. Numerical Method to Find Eigenvalue and Eigenvector 3.7. Inverse Matrix 3.8. Orthogonal Matrix 3.9. Hermitian Matrix 3.10. Unitary Matrix 3.11. Diagonalization of a Matrix 3.12. Cayley-Hamilton Theorem 3.13. Bilinear, Quadratic, and Hermitian Forms 3.14. Change of Basis 3.14.1. Unitary Transformations 3.15. Infinite-dimensional Space 3.16. Hilbert Space 3.16.1. Basis Vectors in Hilbert Space 3.16.2. Quantum States and Operators in Hilbert Space 3.16.3. Schrödinger Equation in Matrix Form 3.17. Statement of Assumptions of Quantum Mechanics 3.18. General Uncertainty Principle 3.19. One Dimensional Harmonic Oscillator 3.20. Solved Examples 3.21. Exercises 4. Transformations, Conservation Laws, and Symmetries 4.1. Translation in Space 4.2. Translation in Time 4.3. Rotation in Space 4.4. Quantum Generalization of the Rotation Operator 4.5. Invariance and Conservation Laws 4.5.1. Infinitesimal Space Translation 4.5.2. Infinitesimal Time Translation 4.5.3. Infinitesimal Rotation 4.5.4. Conservation of Charge 4.6. Parity and Space Inversion 4.6.1. Parity Operator 4.7. Time-Reversal Operator 4.7.1. Properties of Antilinear Operator 4.7.2. Time Reversal Operator for Non-zero Spin Particles 4.8. Solved Examples 4.9. Exercises 5. Angular Momentum 5.1. Orbital Angular Momentum 5.2. Eigenvalues of Angular Momentum 5.3. Eigenfunctions of Orbital Angular Momentum 5.4. General Angular Momentum 5.5. Spin Angular Momentum 5.5.1. Pauli Theory of Spin One-half Systems 5.6. Addition of Angular Momentum 5.6.1. Clebsch-Gordon Coefficients and their Properties 5.6.2. Recursion Relations for Clebsch-Gordon Coefficients 5.6.3. Computation of Clebsch-Gordon Coefficients 5.7. Solved Examples 5.8. Exercises 6. Schrödinger Equation for Central Potentials and 3D System 6.1. Motion in a Central Field 6.2. Energy Eigenvalues of the Hydrogen Atom 6.3. Wave Functions of the Hydrogen Atom 6.4. Radial Probability Density 6.5. Free Particle Motion 6.6. Spherically Symmetric Potential Well 6.7. Electron Confined to a 3D Box 6.8. Solved Examples 6.9. Exercises 7. Approximation Methods 7.1. Perturbation Theory 7.1.1. Perturbation Theory for Nondegenerate States 7.1.1.1. First Order Corrections to Energy and Wave Function Ket 7.1.1.2. Second Order Corrections to Energy and Wave Function Ket 7.1.1.3. kth Order Corrections to Energy and Wave Function Ket 7.1.1.4. Anharmonic Oscillator 7.1.2. Perturbation Theory for Degenerate States 7.1.2.1. Effect of an Electric Field on the First Excited State in a Hydrogen Atom (Linear Stark Effect) 7.2. Variation Method 7.2.1. The Ground State of the Helium Atom 7.2.2. Rayleigh-Ritz Variational Method 7.2.3. The Hydrogen Molecule Ion 7.2.4. Variational Method for Excited States 7.2.5. Application of Variational Method to the Excited State of a 1D Harmonic Oscillator 7.3. The W K B Approximations 7.3.1. The Classical Region 7.3.2. Alternative Derivation of the WKB Formula 7.3.3. Non-classical or Tunneling Region 7.3.4. Connecting Formulae 7.3.5. Quantum Condition for Bound State 7.4. Solved Examples 7.5. Exercises 8. Quantum Theory of Scattering 8.1. Scattering Cross-Section and Frame of Reference 8.2. Asymptotic Expansion and Scattering Amplitude 8.3. Partial Wave Analysis 8.3.1. Free Particle and Asymptotic Solutions 8.3.2. Scattering Amplitude and Phase Shift 8.3.3. Optical Theorem 8.3.4. Scattering Length 8.3.5. Scattering by a Square Well Potential 8.3.6. Scattering by a Hard Sphere Potential 8.3.7. Interpretation of the Phase Shift 8.4. Expression for Phase Shift 8.5. Integral Equation 8.6. The Born Approximation 8.6.1. Scattering by Screened Coulomb Potential 8.6.2. Validity of the Born Approximation 8.7. Transformation from the Center of Mass Coordinate System to the Laboratory Coordinate System 8.8. Solved Examples 8.9. Exercises 9. Quantum Theory of Many Particle Systems 9.1. System of Indistinguishable Particles 9.1.1. Non-interacting System of Particles 9.1.2. Space and Spin Parts of Wave Function 9.2. The Helium Atom 9.2.1. Ground State of Helium 9.2.2. Excited State of Helium 9.3. Systems of N-Electrons 9.3.1. Hartree Approximation 9.3.2. Hartree-Fock Approximation 9.3.3. Thomas-Fermi Theory 9.3.4. Thomas-Fermi Model of Atom 9.3.5. Density Functional Theory 9.4. Solved Examples 9.5. Exercises 10. Time-dependent Perturbations and Semi-classical Treatment of Interaction of Field with Matter 10.1. Time-dependent Potentials 10.2. Exactly Solvable Time-dependent Two-state Systems 10.3. Time-dependent Perturbation Theory 10.3.1. First Order Perturbation 10.4. Harmonic Perturbation 10.4.1. Transition Probability 10.4.2. Fermi’s Golden Rule 10.5. Constant Perturbation 10.5.1. Fermi’s Golden Rule 10.6. Semi-classical Treatment of Interaction of a Field with Matter 10.6.1. Absorption and Stimulated Emission 10.6.2. Electric Dipole Approximation 10.7. Spontaneous Emission and Einstein Coefficients 10.8. Dipole Selection Rules 10.9. Solved Examples 10.10. Exercises 11. Relativistic Quantum Mechanics 11.1. The Klein-Gordon Equation 11.1.1. Probability Density and Probability Current 11.1.2. The Klein-Gordon Equation in a Coulombic Field 11.2. The Dirac Equation 11.2.1. Derivation of the Dirac Equation 11.2.2. Covariant Form of the Dirac Equation 11.2.3. Probability Density and Probability Current 11.3. Free Particle Solutions of the Dirac Equation 11.3.1. Positive and Negative Energy Eigenvalues 11.4. The Dirac Equation and the Constants of Motion 11.5. Spin Magnetic Moment (the Dirac Electron in an Electromagnetic Field) 11.6. Spin-Orbit Interaction Energy 11.7. Solution of the Dirac Equation for Central Potential 11.7.1. Hydrogen-like Atom 11.8. Solved Examples 11.9. Exercises 12. Quantization of Fields and Second Quantization 12.1. Quantization of an Electromagnetic Field 12.1.1. Field Operators 12.2. Second Quantization 12.2.1. Second Quantization of the Schrödinger Equation for Bosons 12.2.2. Second Quantization of the Schrödinger Equation for Fermions 12.2.3. Matrix Representation of Fermionic Operators 12.2.4. Number Operator 12.3. System of Weakly Interacting Bosons 12.4. Free Electron System 12.5. Solved Examples 12.6. Exercises Annexure A: Useful Formulae I. Table of Integrals II. Series and Expansions III. Basic Functional Relations IV. Coordinate Systems Annexure B: Dirac Delta Function I. Properties of Delta Function II. Representation of Delta Function Answers to Exercises Chapter 1 Chapter 2 Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Bibliography Index