دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 17 نویسندگان: Abraham Weishaus, Ph.D., F.S.A., CFA, M.A.A.A. سری: ناشر: Actuarial Study Materials سال نشر: 2014 تعداد صفحات: 1684 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب a/s/m Study Manual for Exam C/Exam 4: Construction and Evaluation of Actuarial Models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب a/s/m راهنمای مطالعه آزمون C/Exam 4: ساخت و ارزیابی مدل های اکچوئری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
I Severity, Frequency, and Aggregate Loss 1 Basic Probability 1.1 Functions and moments 1.2 Percentiles 1.3 Conditional probability and expectation 1.4 Moment and probability generating functions 1.5 The empirical distribution Exercises Solutions 2 Parametric Distributions 2.1 Scaling 2.2 Transformations 2.3 Common parametric distributions 2.3.1 Uniform 2.3.2 Beta 2.3.3 Exponential 2.3.4 Weibull 2.3.5 Gamma 2.3.6 Pareto 2.3.7 Single-parameter Pareto 2.3.8 Lognormal 2.4 The linear exponential family 2.5 Limiting distributions Exercises Solutions 3 Variance 3.1 Additivity 3.2 Normal approximation 3.3 Bernoulli shortcut Exercises Solutions 4 Mixtures and Splices 4.1 Mixtures 4.1.1 Discrete mixtures 4.1.2 Continuous mixtures 4.1.3 Frailty models 4.2 Conditional Variance 4.3 Splices Exercises Solutions 5 Policy Limits Exercises Solutions 6 Deductibles 6.1 Ordinary and franchise deductibles 6.2 Payment per loss with deductible 6.3 Payment per payment with deductible Exercises Solutions 7 Loss Elimination Ratio Exercises Solutions 8 Risk Measures and Tail Weight 8.1 Coherent risk measures 8.2 Value-at-Risk (VaR) 8.3 Tail-Value-at-Risk (TVaR) 8.4 Tail Weight 8.5 Extreme value distributions Exercises Solutions 9 Other Topics in Severity Coverage Modifications Exercises Solutions 10 Bonuses Exercises Solutions 11 Discrete Distributions 11.1 The (a,b,0) class 11.2 The (a,b,1) class Exercises Solutions 12 Poisson/Gamma Exercises Solutions 13 Frequency— Exposure & Coverage Modifications 13.1 Exposure modifications 13.2 Coverage modifications Exercises Solutions 14 Aggregate Loss Models: Compound Variance 14.1 Introduction 14.2 Compound variance Exercises Solutions 15 Aggregate Loss Models: Approximating Distribution Exercises Solutions 16 Aggregate Losses: Severity Modifications Exercises Solutions 17 Aggregate Loss Models: The Recursive Formula Exercises Solutions 18 Aggregate Losses—Aggregate Deductible Exercises Solutions 19 Aggregate Losses: Miscellaneous Topics 19.1 Exact Calculation of Aggregate Loss Distribution 19.1.1 Normal distribution 19.1.2 Exponential and gamma distributions 19.1.3 Compound Poisson models 19.2 Discretizing 19.2.1 Method of rounding 19.2.2 Method of local moment matching Exercises Solutions 20 Supplementary Questions: Severity, Frequency, and Aggregate Loss Solutions II Empirical Models 21 Review of Mathematical Statistics 21.1 Estimator quality 21.1.1 Bias 21.1.2 Consistency 21.1.3 Variance and mean square error 21.2 Hypothesis testing 21.3 Confidence intervals Exercises Solutions 22 The Empirical Distribution for Complete Data 22.1 Individual data 22.2 Grouped data Exercises Solutions 23 Variance of Empirical Estimators with Complete Data 23.1 Individual data 23.2 Grouped data Exercises Solutions 24 Kaplan-Meier and Nelson-Åalen Estimators 24.1 Kaplan-Meier Product Limit Estimator 24.2 Nelson-Åalen Estimator Exercises Solutions 25 Estimation of Related Quantities 25.1 Moments 25.1.1 Complete individual data 25.1.2 Grouped data 25.1.3 Incomplete data 25.2 Range probabilities 25.3 Deductibles and limits 25.4 Inflation Exercises Solutions 26 Variance of Kaplan-Meier and Nelson-Åalen Estimators Exercises Solutions 27 Kernel Smoothing 27.1 Density and distribution 27.1.1 Uniform kernel 27.1.2 Triangular kernel 27.1.3 Other symmetric kernels 27.1.4 Kernels using two-parameter distributions 27.2 Moments of kernel-smoothed distributions Exercises Solutions 28 Mortality Table Construction 28.1 Individual data based methods 28.1.1 Variance of estimators 28.2 Interval-based methods Exercises Solutions 29 Supplementary Questions: Empirical Models Solutions III Parametric Models 30 Method of Moments 30.1 Introductory remarks 30.2 The method of moments for various distributions 30.2.1 Exponential 30.2.2 Gamma 30.2.3 Pareto 30.2.4 Lognormal 30.2.5 Uniform 30.2.6 Other distributions 30.3 Fitting other moments, and incomplete data Exercises Solutions 31 Percentile Matching 31.1 Smoothed empirical percentile 31.2 Percentile matching for various distributions 31.2.1 Exponential 31.2.2 Weibull 31.2.3 Lognormal 31.2.4 Other distributions 31.3 Percentile matching with incomplete data 31.4 Matching a percentile and a moment Exercises Solutions 32 Maximum Likelihood Estimators 32.1 Defining the likelihood 32.1.1 Individual data 32.1.2 Grouped data 32.1.3 Censoring 32.1.4 Truncation 32.1.5 Combination of censoring and truncation Exercises Solutions 33 Maximum Likelihood Estimators—Special Techniques 33.1 Cases for which the Maximum Likelihood Estimator equals the Method of Moments Estimator 33.1.1 Exponential distribution 33.2 Parametrization and Shifting 33.2.1 Parametrization 33.2.2 Shifting 33.3 Transformations 33.3.1 Lognormal distribution 33.3.2 Inverse exponential distribution 33.3.3 Weibull distribution 33.4 Special distributions 33.4.1 Uniform distribution 33.4.2 Pareto distribution 33.4.3 Beta distribution 33.5 Bernoulli technique 33.6 Estimating qx Exercises Solutions 34 Variance Of Maximum Likelihood Estimators 34.1 Information matrix 34.1.1 Calculating variance using the information matrix 34.1.2 Asymptotic variance of MLE for common distributions 34.1.3 True information and observed information 34.2 The delta method 34.3 Confidence Intervals 34.3.1 Normal Confidence Intervals 34.3.2 Non-Normal Confidence Intervals 34.4 Variance of Exact Exposure Estimate of j Exercises Solutions 35 Fitting Discrete Distributions 35.1 Poisson distribution 35.2 Negative binomial 35.3 Binomial 35.4 Fitting (a,b,1) class distributions 35.5 Adjusting for exposure 35.6 Choosing between distributions in the (a,b,0) class Exercises Solutions 36 Hypothesis Tests: Graphic Comparison 36.1 D(x) plots 36.2 p-p plots Exercises Solutions 37 Hypothesis Tests: Kolmogorov-Smirnov 37.1 Individual data 37.2 Grouped data Exercises Solutions 38 Hypothesis Tests: Anderson-Darling Exercises Solutions 39 Hypothesis Tests: Chi-square 39.1 Introduction 39.2 Definition of chi-square statistic 39.3 Degrees of freedom 39.4 Other requirements for the chi-square test 39.5 Data from several periods Exercises Solutions 40 Likelihood Ratio Test and Algorithm, Schwarz Bayesian Criterion 40.1 Likelihood Ratio Test and Algorithm 40.2 Schwarz Bayesian Criterion Exercises Solutions 41 Supplementary Questions: Parametric Models Solutions IV Credibility 42 Limited Fluctuation Credibility: Poisson Frequency Exercises Solutions 43 Limited Fluctuation Credibility: Non-Poisson Frequency Exercises Solutions 44 Limited Fluctuation Credibility: Partial Credibility Exercises Solutions 45 Bayesian Methods—Discrete Prior Exercises Solutions 46 Bayesian Methods—Continuous Prior 46.1 Calculating posterior and predictive distributions 46.2 Recognizing the posterior distribution 46.3 Loss functions 46.4 Interval estimation 46.5 The linear exponential family and conjugate priors Exercises Solutions 47 Bayesian Credibility: Poisson/Gamma Exercises Solutions 48 Bayesian Credibility: Normal/Normal Exercises Solutions 49 Bayesian Credibility: Bernoulli/Beta 49.1 Bernoulli/beta 49.2 Negative binomial/beta Exercises Solutions 50 Bayesian Credibility: Exponential/Inverse Gamma Exercises Solutions 51 Bühlmann Credibility: Basics Exercises Solutions 52 Bühlmann Credibility: Discrete Prior Exercises Solutions 53 Bühlmann Credibility: Continuous Prior Exercises Solutions 54 Bühlmann-Straub Credibility 54.1 Bühlmann-Straub model: Varying exposure 54.2 Hewitt model: Generalized variance of observations Exercises Solutions 55 Exact Credibility Exercises Solutions 56 Bühlmann As Least Squares Estimate of Bayes 56.1 Regression 56.2 Graphic questions 56.3 Cov(Xi,Xj) Exercises Solutions 57 Empirical Bayes Non-Parametric Methods 57.1 Uniform exposures 57.2 Non-uniform exposures 57.2.1 No manual premium 57.2.2 Manual premium Exercises Solutions 58 Empirical Bayes Semi-Parametric Methods 58.1 Poisson model 58.2 Non-Poisson models 58.3 Which Bühlmann method should be used? Exercises Solutions 59 Supplementary Questions: Credibility Solutions V Simulation 60 Simulation—Inversion Method Exercises Solutions 61 Simulation—Special Techniques 61.1 Mixtures 61.2 Multiple decrements 61.3 Simulating (a,b,0) distributions 61.4 Normal random variables: the polar method Exercises Solutions 62 Number of Data Values to Generate Exercises Solutions 63 Simulation—Applications 63.1 Actuarial applications 63.2 Statistical analysis 63.3 Risk measures Exercises Solutions 64 Bootstrap Approximation Exercises Solutions 65 Supplementary Questions: Simulation Solutions VI Practice Exams 1 Practice Exam 1 2 Practice Exam 2 3 Practice Exam 3 4 Practice Exam 4 5 Practice Exam 5 6 Practice Exam 6 7 Practice Exam 7 8 Practice Exam 8 9 Practice Exam 9 10 Practice Exam 10 11 Practice Exam 11 12 Practice Exam 12 13 Practice Exam 13 Appendices A Solutions to the Practice Exams Solutions for Practice Exam 1 Solutions for Practice Exam 2 Solutions for Practice Exam 3 Solutions for Practice Exam 4 Solutions for Practice Exam 5 Solutions for Practice Exam 6 Solutions for Practice Exam 7 Solutions for Practice Exam 8 Solutions for Practice Exam 9 Solutions for Practice Exam 10 Solutions for Practice Exam 11 Solutions for Practice Exam 12 Solutions for Practice Exam 13 B Solutions to Old Exams B.1 Solutions to CAS Exam 3, Spring 2005 B.2 Solutions to SOA Exam M, Spring 2005 B.3 Solutions to CAS Exam 3, Fall 2005 B.4 Solutions to SOA Exam M, Fall 2005 B.5 Solutions to Exam C/4, Fall 2005 B.6 Solutions to CAS Exam 3, Spring 2006 B.7 Solutions to CAS Exam 3, Fall 2006 B.8 Solutions to SOA Exam M, Fall 2006 B.9 Solutions to Exam C/4, Fall 2006 B.10 Solutions to Exam C/4, Spring 2007 C Cross Reference from Loss Models D Exam Question Index