دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Claudio Sacchi, Fabrizio Granelli, Riccardo Bassoli, Frank H. P. Fitzek, Marina Ruggieri سری: Signals and Communication Technology ISBN (شابک) : 3031307615, 9783031307614 ناشر: Springer سال نشر: 2023 تعداد صفحات: 302 [303] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب A Roadmap to Future Space Connectivity: Satellite and Interplanetary Networks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقشه راهی برای اتصال فضایی آینده: ماهواره و شبکه های بین سیاره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری بر آخرین پیشرفتهای تحقیق و توسعه در زمینه فنآوریهای ICT ذاتی چشمانداز فضایی جدید ارائه میکند. این کتاب توصیفی در سطح سیستم و سطح فناوری از شبکهها و ارتباطات فضایی آینده ارائه میکند. نویسندگان همچنین دیدگاه خود را به شبکه های بین سیاره ای گسترش می دهند. این کتاب شامل فناوریهای سختافزاری و نرمافزاری برای شبکههای ارتباطی فضایی آینده است، همچنین پارادایمهای بسیار مدرنی مانند فناوریهای کوانتومی و نرمافزارسازی را در نظر میگیرد. در این کتاب، کلمه «فضا» به معنای گستردهتری نسبت به «ارتباطات ماهوارهای» معمولی، شامل میدانهای جدید و تا حدی ناشناخته مانند ارتباطات فضایی کوانتومی، ارتباطات بین سیارهای و شبکههای دسترسی رادیویی فرازمینی (RAN) در نظر گرفته شده است. این کتاب شامل برنامههایی از جمله اینترنت اشیاء فضایی، اینترنت لمسی/دوقلوهای دیجیتالی برای فضا است و چالشهای آینده مانند چالشهای مرتبط با مفهوم «فضای پایدار» را مورد بحث قرار میدهد. یک نمای کلی از آخرین پیشرفت های تحقیق و توسعه در زمینه فن آوری های ICT ذاتی چشم انداز فضای جدید ارائه می دهد. دیدگاه ها و دیدگاه های فناوری فضایی، از جمله مروری بر ارتباطات ماهواره ای را در نظر می گیرد. یک نمای کلی در سطح سیستم از شبکه های فضایی و ارتباطات آینده را ارائه می دهد.
This book provides an overview of the latest R&D advancements in the field of ICT technologies inherent to a New Space vision. The book presents a system-level and technology-level description of future space networking and communications. The authors also expand the vision to interplanetary networks. The book spans hardware and software technologies for future space communication networks, also considering very modern paradigms like quantum technologies and Softwarization. In the book, the word “space” is intended in a wider sense than the usual “satellite communications”, including new and partially unexplored fields like quantum space communications, interplanetary communications, and extra-terrestrial Radio Access Networks (RANs). The book includes applications including Internet of Space Things, Tactile Internet/Digital twins for Space and discusses future challenges like those involved by the concept of “sustainable Space”. Provides an overview of the latest R&D advancements in the field of ICT technologies inherent to a New Space vision; Considers visions and perspectives of space technology, including a through overview of satellite communications; Presents a system-level overview of future space networking and communications.
Preface Acknowledgements Contents Contributors Acronyms Part I Satellite Communication Technology 1 Millimeter Waves and High-Throughput Satellites: The New Frontier Toward Terabit Connectivity in the Sky 1.1 Enhanced System Flexibility and Reconfigurability 1.1.1 Software Defined Networking 1.1.2 SDN-Enabling Payloads 1.1.2.1 Flexible and Reconfigurable Payloads 1.1.2.2 Inter-Satellite Links 1.2 Spectrum and Dynamic Spectrum Access 1.2.1 Current and Planned Allocations 1.2.2 Dynamic Spectrum Access 1.3 System-Level Capacity Improvement 1.3.1 Multi User-MIMO 1.3.1.1 Beam-Centric MIMO 1.3.1.2 User-Centric MIMO 1.3.1.3 MIMO Algorithms and Normalisations 1.3.1.4 Trends and Challenges 1.3.2 Beam-Hopping 1.4 Air Interfaces 1.4.1 Novel Waveforms 1.4.2 Adaptive Modulation and Coding 1.4.3 Air Interfaces for HTS in High Mobility Scenarios 1.4.4 Impact of HW Impairments 1.5 Feeder Link Evolution to Support 1.5.1 Smart Gateway Deployment and On-Ground Architecture 1.5.2 Feeder Link MIMO 1.6 On-Going/Planned Mission/Services and Mega-Constellations 1.7 Final Remarks References 2 The Role of Satellite in 5G and Beyond 2.1 Non-Terrestrial Networks Standardization 2.1.1 3GPP Release 17: The First 5G NTN-Based Standard 2.1.2 NTN Radio Access Network 2.1.2.1 Direct User Access 2.1.2.2 Relay-Based User Access 2.1.2.3 Multi-Connectivity 2.1.2.4 Radio Protocol Issues and Adaptations 2.1.3 5G-Advanced 2.2 Services 2.3 System Architectures 2.3.1 User Segment 2.3.2 Space Segment 2.3.3 Ground Segment 2.4 Applications 2.5 Research and Development Activities References 3 Futuristic Satellite Scenarios in 6G 3.1 Vision of 6G and Non-Terrestrial Networks 3.2 Architectural Perspectives of 3D Network in 6G 3.2.1 3D Network Platforms and Frequency Bands 3.2.2 Proposed Implementation 3.3 Localisation and RF Sensing in Satellite Networks 3.3.1 Satellite Network-Based Localisation 3.3.2 Satellite Network-Based RF Sensing 3.4 Design Parameters 3.4.1 UAV-Based Implementation of Relay Protocol in 3D Networks 3.4.1.1 Transmission Delay 3.4.1.2 Session Time 3.4.1.3 Signal-to-Noise Ratio 3.4.1.4 Throughput 3.4.1.5 System Parameters 3.4.2 UAV-Based Implementation of Radio Unit in 3D Networks 3.4.2.1 Fronthaul Bandwidth 3.4.2.2 Theoretical Throughput 3.4.2.3 Connection Density 3.4.2.4 Number of Functions 3.4.2.5 Fronthaul Energy Consumption References 4 Quantum Satellite Communications 4.1 Introduction 4.2 Introduction to Quantum Communications 4.2.1 Superposition 4.2.2 Multiple Qubits and Entanglement 4.2.3 Bloch Sphere 4.2.4 Quantum Computing Gates 4.2.4.1 Single Qubit Gates 4.2.5 2 Qubit and Multi-Qubit Gates 4.2.6 Bell State Measurement 4.2.7 Entanglement Swapping 4.2.8 Measurement 4.2.9 Nondemolition Measurement 4.3 State of the Art in the Quantum Satellite Communications 4.3.1 Quantum Key Distribution 4.3.2 Entanglement Distribution 4.3.3 Entanglement Based QKD 4.4 Why Satellite-Based Quantum Communication 4.5 Recent Trends in Quantum Satellite Communications 4.5.1 Satellite-to-Ground Communication 4.5.2 Entanglement with Multiple Satellite Links 4.5.3 Continuous Variable Entanglement Distribution 4.5.4 Quantum Information Transfer Through Free Space 4.5.4.1 Single Photon Transfer along 7000km in Space 4.5.4.2 Optical Signals Through 38,600km into The Atmosphere 4.5.4.3 QKD Through Inter-Satellite Free-Space Links 4.5.5 Breakthrough in Quantum Satellite Communications Around 2017 4.5.5.1 Satellite-to-Ground QKD and Ground-to-Satellite Quantum State Transfer 4.5.6 Developments Towards a Global Network 4.5.6.1 Satellite Based Quantum Intercontinental Network 4.5.6.2 Global Navigation Satellite System Using Quantum Communication 4.5.7 Secured Quantum Entanglement-Based Cryptography Demonstration Using Satellites 4.5.8 Moving Boundaries from Lab to Real World 4.5.8.1 A 4600km Comprehensive Quantum Communication Network from Space to The Ground 4.5.9 An Overview of QKD experiments on-Orbit Over the Years 4.6 Final Remarks 4.7 Current Limitations in Quantum Satellite Communications 4.8 Future Works in Quantum Satellite Communications References Part II Systems and Infrastructures 5 Ground and Space Hardware for Interplanetary Communication Networks 5.1 Introduction 5.2 Ground Infrastructure for Interplanetary Communication Network 5.2.1 Deep Space Antenna Architecture 5.2.2 Uplink and Downlink Chains 5.2.3 DSN Capabilities 5.2.4 ESTRACK Capabilities 5.3 On-Board Equipment for Interplanetary Communication Networks 5.3.1 S/C TT&C Transponders 5.3.2 S/C Solid State vs Travelling Wave Tube Amplifiers 5.3.3 High- Medium and Low Gain Antennas 5.4 Direct Earth-to-Deep Space RF links vs Multi-Hop Links 5.4.1 Typical Performances and Limitations of a Direct Link 5.4.2 Data Relay Architectures 5.4.2.1 Data Relay Architectures for Earth Orbiting Users 5.4.2.2 Next Generation Data Relay Architectures for Earth Orbiting Users 5.4.2.3 Data Relay Architectures for Deep Space Users 5.4.3 Multi-Hop Links Advantages and Architectures 5.5 Guidelines for System Resources Allocation 5.5.1 Hardware Resources for a Traditional Single-Hop RF Link 5.5.2 Hardware Resources for a Relay Satellite 5.5.2.1 HW Resources for a Q/V EHF Band Link 5.5.2.2 HW Resources for an Optical Link 5.5.3 Technology Roadmap 5.6 Conclusions References 6 End-to-End Space System: Engineering Considerations 6.1 Introduction 6.2 Statistical Nature of Onboard Data Generation 6.3 Statistical Nature of Communication Link 6.4 Link Optimization, Reliability, and Margin Policy 6.4.1 Review of Link Analysis Techniques 6.4.1.1 Link Budgeting Approach 6.4.1.2 Statistical Link Analysis 6.4.1.3 Minimum Margin for Link Design and Optimization 6.4.1.4 Illustrating Examples 6.4.1.5 Analysis Insight and Concept of Minimum Margin 6.4.2 ARQ Links for Reliable Communications and Its Statistical Characterization 6.4.2.1 Summary of Prior Results in ARQ Link Analysis 6.4.2.2 Statistical ARQ Link Analysis with Unlimited Number of Re-Transmissions 6.4.2.3 Statistical ARQ Link Analysis of Truncated ARQ with K Re-Transmissions 6.5 Concluding Remarks References 7 Intelligent Space Communication Networks 7.1 Introduction 7.2 AI Improvements in Satellite Networks 7.2.1 Communication Resource Allocation 7.2.2 Security 7.2.3 Orbital Edge Computing (OEC) 7.2.4 Remote Sensing 7.2.5 Space-Air-Ground Integrated Network 7.2.6 Satellite Operations References 8 Technologies and Infrastructures for a Sustainable Space 8.1 Space Sustainability: The Problem 8.2 Space Debris Mitigation/Removal 8.3 Sustainable-by-Design Approach: Enabling Technology 8.3.1 Concept of Sustainability by Design 8.3.2 BW/FW Compatibility: Federated Satellite Systems 8.3.3 BW/FW Compatibility: Joint Communication and Sensing 8.3.4 Ally Technologies 8.3.4.1 Softwarization 8.3.4.2 Autonomy and AI Tools 8.3.5 Very High-Speed Inter-Satellite/Inter-Layer Links 8.4 Conclusions References Part III Interplanetary Networking 9 Softwarization in Satellite and Interplanetary Networks 9.1 Introduction 9.2 Computational and Communication Technologies for Massive Space Exploration 9.2.1 Cloud, Edge, and Fog Computing 9.2.2 Network Coverage, Network Softwarization, and Network Automation 9.2.2.1 Virtualization and Softwarization 9.2.2.2 Backbone Network Technologies for Space Applications 9.2.2.3 Network Coverage Technologies on Remote Environment 9.2.2.4 Network Automation 9.2.2.5 Service Oriented Architecture for Intelligent Network Design 9.2.3 Internet of Things 9.2.4 Artificial Intelligence for Space Applications 9.3 Network Softwarization and In-Network Intelligence for Teleoperation, Telerobotic and Telepresence in Massive Space Exploration 9.3.1 Teleoperation 9.3.2 Telerobotic 9.3.3 Telepresence 9.3.4 Augmented Telerobotic 9.4 Teleoperation Using Edge Computing References 10 Extraterrestrial Radio Access Network: The Road to Broadband Connectivity on Mars 10.1 Introduction 10.2 The Current (and Near Future) Picture of Martian Surface Connectivity 10.3 Martian Communications Supported by Sky Connections 10.4 LTE Connections Operating on the Mars Soil: Would They Be Practicable? 10.5 Advanced Solutions Based on 3D NTN and C-RAN 10.6 Conclusion References Part IV New Space Applications 11 Integration between Communication, Navigation and for Space Applications: Case Study on Lunar Satellite Navigation System with Focus on ODTS Techniques 11.1 Introduction: From Earth to Space Applications 11.2 Integrated Communication, Navigation and Sensing Systems for Space: Moon Case Study 11.2.1 Lunar Communication System Architecture 11.2.2 Lunar Satellite Navigation System 11.3 Orbit Determination Techniques for Lunar Satellite Navigation 11.4 Tracking from Earth or from Earth Orbit 11.5 Satellite Laser Ranging 11.6 Very Long Baseline Interferometry 11.7 High Sensitivity Spaceborn Receiver 11.8 Multiple Spacecraft Per Antenna Approach in TT&C Design 11.9 Tracking from Moon or from the Moon Orbit 11.9.1 Orbit Determination Candidate Configurations and Baseline Concept Introduction 11.10 Lunar Navigation ODTS System Architecture Baseline 11.11 Conclusions References 12 The Internet-of-Things, the Internet of Remote Things, and the Path Towards the Internet of Space Things 12.1 Introduction 12.2 3GPP Non-Terrestrial Networks for the IoT 12.2.1 Innovations of the Latest 3GPP Releases 12.2.1.1 Release 16 12.2.1.2 Release 17 12.2.1.3 Release 18 12.2.2 Innovation Projects 12.2.2.1 5G-EMERGE (2022) 12.3 LPWAN for IoT 12.4 Open Challenges Towards the Internet of Space Things 12.4.1 Independent LEO Satellites for IoRT/IoST 12.4.1.1 LEO Satellites of IoT with and Without ISL 12.4.1.2 Commercial LEO Constellations for IoT 12.4.2 Physical Layer 12.4.3 Medium Access 12.4.4 Network and Higher Layers 12.4.5 Edge Computing 12.5 Conclusions References Epilogue Index