دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: John M. Erdman سری: Pure and Applied Undergraduate Texts 32 ISBN (شابک) : 9781470442460 ناشر: American Mathematical Society سال نشر: 2018 تعداد صفحات: 384 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب A Problems Based Course in Advanced Calculus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یک دوره مبتنی بر مشکلات در حساب دیفرانسیل و انتگرال پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی برای دوره ای در حساب دیفرانسیل و انتگرال پیشرفته که یادگیری فعال را از طریق حل مسئله ترویج می کند، مناسب است. می توان از آن به عنوان پایه ای برای روش مور یا کلاس مبتنی بر پرس و جو استفاده کرد، یا به عنوان راهنما در یک محیط کلاس درس سنتی که در آن سخنرانی ها پیرامون ارائه مشکلات و راه حل ها سازماندهی می شوند. این کتاب برای هر دانش آموزی که یک دوره مقدماتی در حساب دیفرانسیل و انتگرال را گذرانده است (یا به طور همزمان می گذراند) مناسب است. این کتاب شامل شانزده ضمیمه است که برخی از پیش نیازهای ضروری در مورد تکنیک های اثبات نگارش را با توجه ویژه به نماد استفاده شده در دوره مرور می کند.
This textbook is suitable for a course in advanced calculus that promotes active learning through problem solving. It can be used as a base for a Moore method or inquiry based class, or as a guide in a traditional classroom setting where lectures are organized around the presentation of problems and solutions. This book is appropriate for any student who has taken (or is concurrently taking) an introductory course in calculus. The book includes sixteen appendices that review some indispensable prerequisites on techniques of proof writing with special attention to the notation used the course.
Cover......Page 1
Title page......Page 4
Contents......Page 8
Preface......Page 14
For students: How to use this book......Page 18
1.1. Distance and neighborhoods......Page 22
1.2. Interior of a set......Page 24
2.1. Open subsets of \R......Page 26
2.2. Closed subsets of \R......Page 28
3.1. Continuity—as a local property......Page 32
3.2. Continuity—as a global property......Page 34
3.3. Functions defined on subsets of \R......Page 37
4.1. Convergence of sequences......Page 42
4.2. Algebraic combinations of sequences......Page 45
4.3. Sufficient condition for convergence......Page 46
4.4. Subsequences......Page 50
5.1. Connected subsets of \R......Page 54
5.2. Continuous images of connected sets......Page 56
5.3. Homeomorphisms......Page 58
Chapter 6. Compactness and the extreme value theorem......Page 60
6.1. Compactness......Page 61
6.2. Examples of compact subsets of \R......Page 62
6.3. The extreme value theorem......Page 64
7.1. Definition......Page 66
7.2. Continuity and limits......Page 67
8.1. The families \lobo and \lobo......Page 70
8.2. Tangency......Page 73
8.3. Linear approximation......Page 74
8.4. Differentiability......Page 76
Chapter 9. Metric spaces......Page 80
9.2. Examples......Page 81
9.3. Equivalent metrics......Page 85
10.1. Definitions and examples......Page 88
10.2. Interior points......Page 89
10.3. Accumulation points and closures......Page 90
11.1. Open and closed sets......Page 92
11.2. The relative topology......Page 95
12.1. Convergence of sequences......Page 98
12.2. Sequential characterizations of topological properties......Page 99
12.3. Products of metric spaces......Page 100
13.1. The uniform metric on the space of bounded functions......Page 102
13.2. Pointwise convergence......Page 104
14.1. Continuous functions......Page 106
14.2. Maps into and from products......Page 112
14.3. Limits......Page 114
15.1. Definition and elementary properties......Page 120
15.2. The extreme value theorem......Page 122
15.3. Dini’s theorem......Page 123
16.1. Sequential compactness......Page 124
16.2. Conditions equivalent to compactness......Page 126
16.3. Products of compact spaces......Page 127
16.4. The Heine–Borel theorem......Page 128
17.1. Connected spaces......Page 130
17.2. Arcwise connected spaces......Page 132
18.1. Cauchy sequences......Page 134
18.2. Completeness......Page 135
18.3. Completeness vs. compactness......Page 136
19.1. The contractive mapping theorem......Page 138
19.2. Application to integral equations......Page 143
20.1. Definitions and examples......Page 146
20.2. Linear combinations......Page 151
20.3. Convex combinations......Page 153
21.1. Linear transformations......Page 156
21.2. The algebra of linear transformations......Page 160
21.3. Matrices......Page 163
21.4. Determinants......Page 167
21.5. Matrix representations of linear transformations......Page 169
22.1. Norms on linear spaces......Page 174
22.2. Norms induce metrics......Page 176
22.3. Products......Page 177
22.4. The space \fml(,)......Page 181
23.1. Bounded linear transformations......Page 184
23.2. The Stone–Weierstrass theorem......Page 189
23.3. Banach spaces......Page 192
23.4. Dual spaces and adjoints......Page 193
24.1. Uniform continuity......Page 196
24.2. The integral of step functions......Page 199
24.3. The Cauchy integral......Page 202
25.1. \lobo and \lobo functions......Page 210
25.2. Tangency......Page 213
25.3. Differentiation......Page 214
25.4. Differentiation of curves......Page 218
25.5. Directional derivatives......Page 220
25.6. Functions mapping into product spaces......Page 222
26.1. The mean value theorem(s)......Page 224
26.2. Partial derivatives......Page 230
26.3. Iterated integrals......Page 235
27.1. Inner products......Page 238
27.2. The gradient......Page 241
27.3. The Jacobian matrix......Page 246
27.4. The chain rule......Page 247
Chapter 28. Infinite series......Page 254
28.1. Convergence of series......Page 255
28.2. Series of positive scalars......Page 260
28.3. Absolute convergence......Page 261
28.4. Power series......Page 262
Chapter 29. The implicit function theorem......Page 272
29.1. The inverse function theorem......Page 273
29.2. The implicit function theorem......Page 277
30.1. Multilinear functions......Page 286
30.2. Second order differentials......Page 292
30.3. Higher order differentials......Page 297
Appendix A. Quantifiers......Page 298
Appendix B. Sets......Page 300
Appendix C. Special subsets of \R......Page 304
D.1. Disjunction and conjunction......Page 306
D.2. Implication......Page 308
D.3. Restricted quantifiers......Page 309
D.4. Negation......Page 310
E.1. Proving theorems......Page 312
E.2. Checklist for writing mathematics......Page 313
E.3. Fraktur and Greek alphabets......Page 316
F.1. Unions......Page 318
F.2. Intersections......Page 320
F.3. Complements......Page 322
G.1. The field axioms......Page 324
G.3. Uniqueness of inverses......Page 326
G.4. Another consequence of uniqueness......Page 327
Appendix H. Order properties of \R......Page 330
Appendix I. Natural numbers and mathematical induction......Page 334
J.1. Upper and lower bounds......Page 338
J.2. Least upper and greatest lower bounds......Page 339
J.3. The least upper bound axiom for \R......Page 341
J.4. The Archimedean property......Page 342
K.1. Cartesian products......Page 344
K.2. Relations......Page 345
K.3. Functions......Page 346
L.1. Images and inverse images......Page 348
L.2. Composition of functions......Page 349
L.4. Diagrams......Page 350
L.5. Restrictions and extensions......Page 351
M.1. Injections, surjections, and bijections......Page 352
M.2. Inverse functions......Page 355
Appendix N. Products......Page 358
Appendix O. Finite and infinite sets......Page 360
Appendix P. Countable and uncountable sets......Page 364
Bibliography......Page 368
Index......Page 370
Back Cover......Page 384