ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب A Practical Introduction to Index Numbers

دانلود کتاب مقدمه ای عملی بر اعداد شاخص

A Practical Introduction to Index Numbers

مشخصات کتاب

A Practical Introduction to Index Numbers

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781118977781, 1118977793 
ناشر: Wiley 
سال نشر: 2015 
تعداد صفحات: 234 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 مگابایت 

قیمت کتاب (تومان) : 30,000



کلمات کلیدی مربوط به کتاب مقدمه ای عملی بر اعداد شاخص: اعداد شاخص (اقتصاد) ریاضی / احتمالات و آمار / عمومی.



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب A Practical Introduction to Index Numbers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه ای عملی بر اعداد شاخص نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه ای عملی بر اعداد شاخص

\"این کتاب مقدمه ای بر مبحث اعداد شاخص برای آماردانان، اقتصاددانان و اعضای شمارش عمومی ارائه می دهد\"--


توضیحاتی درمورد کتاب به خارجی

\"This book offers an introduction to the subject of index numbers for statisticians, economists and numerate members of the public\"--



فهرست مطالب

Content: Preface xi     Acknowledgements xv     1 Introduction 1     1.1 What is an index number? 1     1.2 Example - the Consumer Prices Index 2     1.3 Example - FTSE 100 5     1.4 Example - Multidimensional Poverty Index 6     1.5 Example - Gender Inequality Index 6     1.6 Representing the world with index numbers 7     1.7 Chapter summary 8     References 8     2 Index numbers and change 9     2.1 Calculating an index series from a data series 9     2.2 Calculating percentage change 11     2.3 Comparing data series with index numbers 13     2.4 Converting from an index series to a data series 14     2.5 Chapter summary 16     Exercise A 17     3 Measuring inflation 19     3.1 What is inflation? 19     3.2 What are inflation measures used for and why are they important? 20     3.2.1 Determination of monetary policy by a central bank 21     3.2.2 Changing of provisions for private pensions 21     3.2.3 Changes in amounts paid over long-term contracts 21     3.2.4 Changes in rail fares and other goods 22     3.2.5 Evaluating investment decisions 22     3.2.6 Inputs to economic research and analysis 23     3.2.7 Index-linked debt 23     3.2.8 Tax allowances 23     3.2.9 Targets for stability of the economy in an international context 23     3.3 Chapter summary 24     References 24     Exercise B 25     4 Introducing price and quantity 27     4.1 Measuring price change 27     4.2 Simple, un-weighted indices for price change 30     4.2.1 Simple price indices 30     4.2.2 Simple quantity indices 33     4.3 Price, quantity and value 34     4.4 Example - Retail Sales Index 35     4.5 Chapter summary 36     Exercise C 37     5 Laspeyres and Paasche indices 39     5.1 The Laspeyres price index 40     5.2 The Paasche price index 41     5.3 Laspeyres and Paasche quantity indices 43     5.4 Laspeyres and Paasche: mind your Ps and Qs 45     5.4.1 Laspeyres price index as a weighted sum of price relatives 45     5.4.2 Laspeyres quantity index as a weighted sum of quantity relatives 46     5.4.3 Paasche price index as a weighted harmonic mean of price relatives 46     5.4.4 Paasche quantity index as a weighted harmonic mean of quantity relatives 46     5.5 Laspeyres, Paasche and the Index Number Problem 48     5.6 Laspeyres or Paasche? 49     5.7 A more practical alternative to a Laspeyres price index? 51     5.8 Chapter summary 51     References 52     Exercise D 53     6 Domains and aggregation 55     6.1 Defining domains 55     6.2 Indices for domains 57     6.3 Aggregating domains 58     6.4 More complex aggregation structures 62     6.5 A note on aggregation structures in practice 62     6.6 Non-consistency in aggregation 63     6.7 Chapter summary 63     Exercise E 64     7 Linking and chain-linking 67     7.1 Linking 68     7.2 Re-basing 71     7.3 Chain-linking 74     7.4 Chapter summary 75     Exercise F 76     8 Constructing the consumer prices index 79     8.1 Specifying the index 79     8.2 The basket 80     8.3 Locations and outlets 81     8.4 Price collection 81     8.5 Weighting 81     8.6 Aggregation structure 82     8.7 Elementary aggregates 83     8.8 Linking 84     8.9 Owner occupier housing 85     8.10 Publication 85     8.11 Special procedures 86     8.12 Chapter summary 86     References 86     Exercise G 88     9 Re-referencing a series 89     9.1 Effective comparisons with index numbers 89     9.2 Changing the index reference period 92     9.3 Why re-reference? 94     9.4 Re-basing 95     9.5 Chapter summary 96     References 96     Exercise H 97     10 Deflation 99     10.1 Value at constant price 101     10.2 Volume measures in the national accounts 102     10.3 Chapter summary 103     Exercise I 104     11 Price and quantity index numbers in practice 105     11.1 A big picture view of price indices 105     11.2 The harmonised index of consumer prices 106     11.3 UK measures of consumer price inflation 107     11.4 PPI and SPPI 108     11.5 PPPs and international comparison 109     11.6 Quantity indices 109     11.7 Gross domestic product 110     11.8 Index of Production 111     11.9 Index of services 112     11.10 Retail sales index 113     11.11 Chapter summary 114     11.12 Data links 115     References 115     12 Further index formulae 119     12.1 Recap on price index formulae 119     12.2 Classifying price and quantity index formulae 120     12.3 Asymmetrically weighted price indices 120     12.4 Symmetric weighted price indices 123     12.5 Un-weighted price indices 124     12.6 Different formulae, different index numbers 126     12.7 Chapter summary 127     References 127     Exercise J 129     13 The choice of index formula 131     13.1 The index number problem 131     13.2 The axiomatic approach 133     13.3 The economic approach 134     13.4 The sampling approach 135     13.5 The stochastic approach to index numbers 136     13.6 Which approach is used in practice? 137     13.7 Chapter summary 138     References 138     Exercise K 140     14 Issues in index numbers 141     14.1 Cost-of-living versus cost-of-goods 141     14.2 Consumer behaviour and substitution 143     14.3 New and disappearing goods 144     14.4 Quality change 145     14.4.1 Option 1: do nothing - pure price change 146     14.4.2 Option 2: automatic linking - pure quality change 146     14.4.3 Option 3: linking 147     14.4.4 Option 4: imputation 147     14.4.5 Option 5: hedonics 147     14.5 Difficult to measure items 148     14.6 Chapter summary 149     References 149     15 Research topics in index numbers 151     15.1 The uses of scanner data 151     15.1.1 Improvements at the lowest level of aggregation 152     15.1.2 Understanding consumer behaviour 152     15.1.3 Alternative measurement schemes 153     15.1.4 Frequency of indices 153     15.2 Variations on indices 154     15.2.1 Regional indices 154     15.2.2 Variation by socio-economic group or income quantile 154     15.3 Difficult items 155     15.3.1 Clothing 155     15.3.2 New and disappearing goods 156     15.3.3 Hedonics 157     15.4 Chaining 157     15.5 Some research questions 158     References 158     A Mathematics for index numbers 161     A.1 Notation 161     A.1.1 Summation notation 161     A.1.2 An alternative representation 163     A.1.3 Geometric indices 164     A.1.4 Harmonic indices 164     A.2 Key results 165     A.2.1 The value ratio decomposition 165     A.2.2 Converting between the two forms of price and quantity indices 166     A.2.3 Other examples of the price-relative/weights 167     A.2.4 The value ratio as a product of Fisher indices 167     A.3 Index Formula Styles 168     B Choice of index formula 169     B.1 The axiomatic approach to index numbers 169     B.1.1 An introduction to the axiomatic approach 169     B.1.2 Some axioms 170     B.1.3 Choosing an index based on the axiomatic approach 173     B.1.4 Conclusions 174     B.2 The economic approach to index numbers 174     B.2.1 The economic approach to index numbers 174     B.2.2 A result on expenditure indices 177     B.2.3 Example 1: Cobb-Douglas and the Jevons index 179     B.2.4 Example 2: CES and the Lloyd-Moulton index 181     B.2.5 Issues with the economic approach 183     References 184     C Glossary of terms and formulas 185     C.1 Commonly used terms 185     C.2 Commonly used symbols 189     C.3 Unweighted indices (price versions only) 190     C.4 Weighted indices (price versions only) 191     D Solutions to exercises 193     E Further reading 211     E.1 Manuals 211     E.2 Books 211     E.3 Papers 212     Index 213




نظرات کاربران