دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Kenneth Dawson-Howe
سری: Wiley-IS&T Series in Imaging Science and Technology
ISBN (شابک) : 9781118848456, 1118848454
ناشر: Wiley
سال نشر: 2014
تعداد صفحات: 235
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب A practical introduction to computer vision with OpenCV2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای عملی برای بینایی کامپیوتر با OpenCV2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تئوری پشت بینایی اولیه کامپیوتر را توضیح می دهد و پلی از نظریه به اجرای عملی با استفاده از کتابخانه های استاندارد صنعتی OpenCV ارائه می دهد
بینایی کامپیوتر یک حوزه به سرعت در حال گسترش است و به دلیل در دسترس بودن کتابخانه های با کیفیت بالا (مانند OpenCV 2) به تدریج برای توسعه دهندگان استفاده از این زمینه آسان تر می شود. این متن برای تسهیل استفاده عملی از بینایی رایانه با هدف پر کردن شکاف بین تئوری و اجرای عملی بینایی رایانه در نظر گرفته شده است. این کتاب نحوه استفاده از روالهای کتابخانه OpenCV مربوطه را توضیح میدهد و با یک برنامه کاری کامل شامل قطعههای کد از متن همراه خواهد بود. این کتاب درسی، مقدمهای کاربردی و مصور برای حوزهای هیجانانگیز است که کاربردهای آن تقریباً در همه جا وجود دارد. اکنون ما توسط دوربین ها احاطه شده ایم، به عنوان مثال دوربین های روی رایانه
Explains the theory behind basic computer vision and provides a bridge from the theory to practical implementation using the industry standard OpenCV libraries
Computer Vision is a rapidly expanding area and it is becoming progressively easier for developers to make use of this field due to the ready availability of high quality libraries (such as OpenCV 2). This text is intended to facilitate the practical use of computer vision with the goal being to bridge the gap between the theory and the practical implementation of computer vision. The book will explain how to use the relevant OpenCV library routines and will be accompanied by a full working program including the code snippets from the text. This textbook is a heavily illustrated, practical introduction to an exciting field, the applications of which are becoming almost ubiquitous. We are now surrounded by cameras, for example cameras on computers & tablets/ cameras built into our mobile phones/ cameras in games consoles; cameras imaging difficult modalities (such as ultrasound, X-ray, MRI) in hospitals, and surveillance cameras. This book is concerned with helping the next generation of computer developers to make use of all these images in order to develop systems which are more intuitive and interact with us in more intelligent ways.
Content: Preface xiii 1 Introduction 1 1.1 A Difficult Problem 1 1.2 The Human Vision System 2 1.3 Practical Applications of Computer Vision 3 1.4 The Future of Computer Vision 5 1.5 Material in This Textbook 6 1.6 Going Further with Computer Vision 7 2 Images 9 2.1 Cameras 9 2.1.1 The Simple Pinhole Camera Model 9 2.2 Images 10 2.2.1 Sampling 11 2.2.2 Quantisation 11 2.3 Colour Images 13 2.3.1 Red--Green--Blue (RGB) Images 14 2.3.2 Cyan--Magenta--Yellow (CMY) Images 17 2.3.3 YUV Images 17 2.3.4 Hue Luminance Saturation (HLS) Images 18 2.3.5 Other Colour Spaces 20 2.3.6 Some Colour Applications 20 2.4 Noise 22 2.4.1 Types of Noise 23 2.4.2 Noise Models 25 2.4.3 Noise Generation 26 2.4.4 Noise Evaluation 26 2.5 Smoothing 27 2.5.1 Image Averaging 27 2.5.2 Local Averaging and Gaussian Smoothing 28 2.5.3 Rotating Mask 30 2.5.4 Median Filter 31 3 Histograms 35 3.1 1D Histograms 35 3.1.1 Histogram Smoothing 36 3.1.2 Colour Histograms 37 3.2 3D Histograms 39 3.3 Histogram/Image Equalisation 40 3.4 Histogram Comparison 41 3.5 Back-projection 43 3.6 k-means Clustering 44 4 Binary Vision 49 4.1 Thresholding 49 4.1.1 Thresholding Problems 50 4.2 Threshold Detection Methods 51 4.2.1 Bimodal Histogram Analysis 52 4.2.2 Optimal Thresholding 52 4.2.3 Otsu Thresholding 54 4.3 Variations on Thresholding 56 4.3.1 Adaptive Thresholding 56 4.3.2 Band Thresholding 57 4.3.3 Semi-thresholding 58 4.3.4 Multispectral Thresholding 58 4.4 Mathematical Morphology 59 4.4.1 Dilation 60 4.4.2 Erosion 62 4.4.3 Opening and Closing 63 4.4.4 Grey-scale and Colour Morphology 65 4.5 Connectivity 66 4.5.1 Connectedness: Paradoxes and Solutions 66 4.5.2 Connected Components Analysis 67 5 Geometric Transformations 71 5.1 Problem Specification and Algorithm 71 5.2 Affine Transformations 73 5.2.1 Known Affine Transformations 74 5.2.2 Unknown Affine Transformations 75 5.3 Perspective Transformations 76 5.4 Specification of More Complex Transformations 78 5.5 Interpolation 78 5.5.1 Nearest Neighbour Interpolation 79 5.5.2 Bilinear Interpolation 79 5.5.3 Bi-Cubic Interpolation 80 5.6 Modelling and Removing Distortion from Cameras 80 5.6.1 Camera Distortions 81 5.6.2 Camera Calibration and Removing Distortion 82 6 Edges 83 6.1 Edge Detection 83 6.1.1 First Derivative Edge Detectors 85 6.1.2 Second Derivative Edge Detectors 92 6.1.3 Multispectral Edge Detection 97 6.1.4 Image Sharpening 98 6.2 Contour Segmentation 99 6.2.1 Basic Representations of Edge Data 99 6.2.2 Border Detection 102 6.2.3 Extracting Line Segment Representations of Edge Contours 105 6.3 Hough Transform 108 6.3.1 Hough for Lines 109 6.3.2 Hough for Circles 111 6.3.3 Generalised Hough 112 7 Features 115 7.1 Moravec Corner Detection 117 7.2 Harris Corner Detection 118 7.3 FAST Corner Detection 121 7.4 SIFT 122 7.4.1 Scale Space Extrema Detection 123 7.4.2 Accurate Keypoint Location 124 7.4.3 Keypoint Orientation Assignment 126 7.4.4 Keypoint Descriptor 127 7.4.5 Matching Keypoints 127 7.4.6 Recognition 127 7.5 Other Detectors 129 7.5.1 Minimum Eigenvalues 130 7.5.2 SURF 130 8 Recognition 131 8.1 Template Matching 131 8.1.1 Applications 131 8.1.2 Template Matching Algorithm 133 8.1.3 Matching Metrics 134 8.1.4 Finding Local Maxima or Minima 135 8.1.5 Control Strategies for Matching 137 8.2 Chamfer Matching 137 8.2.1 Chamfering Algorithm 137 8.2.2 Chamfer Matching Algorithm 139 8.3 Statistical Pattern Recognition 140 8.3.1 Probability Review 142 8.3.2 Sample Features 143 8.3.3 Statistical Pattern Recognition Technique 149 8.4 Cascade of Haar Classifiers 152 8.4.1 Features 154 8.4.2 Training 156 8.4.3 Classifiers 156 8.4.4 Recognition 158 8.5 Other Recognition Techniques 158 8.5.1 Support Vector Machines (SVM) 158 8.5.2 Histogram of Oriented Gradients (HoG) 159 8.6 Performance 160 8.6.1 Image and Video Datasets 160 8.6.2 Ground Truth 161 8.6.3 Metrics for Assessing Classification Performance 162 8.6.4 Improving Computation Time 165 9 Video 167 9.1 Moving Object Detection 167 9.1.1 Object of Interest 168 9.1.2 Common Problems 168 9.1.3 Difference Images 169 9.1.4 Background Models 171 9.1.5 Shadow Detection 179 9.2 Tracking 180 9.2.1 Exhaustive Search 181 9.2.2 Mean Shift 181 9.2.3 Dense Optical Flow 182 9.2.4 Feature Based Optical Flow 185 9.3 Performance 186 9.3.1 Video Datasets (and Formats) 186 9.3.2 Metrics for Assessing Video Tracking Performance 187 10 Vision Problems 189 10.1 Baby Food 189 10.2 Labels on Glue 190 10.3 O-rings 191 10.4 Staying in Lane 192 10.5 Reading Notices 193 10.6 Mailboxes 194 10.7 Abandoned and Removed Object Detection 195 10.8 Surveillance 196 10.9 Traffic Lights 197 10.10 Real Time Face Tracking 198 10.11 Playing Pool 199 10.12 Open Windows 200 10.13 Modelling Doors 201 10.14 Determining the Time from Analogue Clocks 202 10.15 Which Page 203 10.16 Nut/Bolt/Washer Classification 204 10.17 Road Sign Recognition 205 10.18 License Plates 206 10.19 Counting Bicycles 207 10.20 Recognise Paintings 208 References 209 Index 213