دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: منطق ویرایش: نویسندگان: G.E.Hughes. M.J. Cresswell سری: ISBN (شابک) : 0415126002 ناشر: Routledge سال نشر: 1996 تعداد صفحات: 431 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب A New Introduction to Modal Logic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای جدید بر منطق معین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مورد انتظار نه یکی، بلکه جایگزین دو مطالعه کلاسیک قبلی هیوز و کرسول در مورد منطق مودال می شود: مقدمه ای بر منطق مدال و همراهی برای منطق مدال. مقدمهای جدید بر منطق مدال یک اثر کاملاً جدید است که توسط نویسندگان کاملاً بازنویسی شده است تا همه پیشرفتهای جدیدی را که از سال 1968 در منطق گزارهای وجهی و منطق محمول مدال رخ داده است، در خود بگنجاند، اما بدون به خطر انداختن وضوح بیان و قابلیت دسترسی. ویژگی های اساسی کارهای قبلی این کتاب خوانندگان را از ابتداییترین سیستمهای منطق حرف اضافه وجهی تا سیستمهای محمول وجهی با هویت میبرد. هم به پیشرفتهای فنی مانند کامل و ناتمام بودن و هم به مدلهای متناهی و نامتناهی میپردازد و کاربردهای فلسفی را بهویژه در حوزه منطق محمولات وجهی مورد بحث قرار میدهد.
This long-awaited book replaces not one but both of Hughes and Cresswell's two previous classic studies of modal logic: An Introduction to Modal Logic and A Companion to Modal Logic. A New Introduction to Modal Logic is an entirely new work, completely rewritten by the authors to incorporate all the new developments that have taken places since 1968 both in modal propositional logical and modal predicate logic, but without sacrificing the clarity of exposition and approachability that were essential features of the earlier works. The book takes readers through the most basic systems of modal prepositional logic right up to systems of modal predicate with identity. It deals with both technical developments such as completeness and incompleteness, and finite and infinite models, and discusses philosophical applications, especially, in the area of modal predicate logic.
Part One: Basic Modal Propositional Logic 1 The Basic Notions 3 The language of PC (3) Interpretation (4) Further operators (6) Interpretation of A , D and = (7) Validity (8) Testing for validity: (i) the truth-table method (10) Testing for validity: (ii) the Reductio method (11) Some valid wff of PC (13) Basic modal notions (13) The language of propositional modal logic (16) Validity in propositional modal logic (17) Exercises — 1 (21) Notes (22) 2 The Systems K, T and D 23 Systems of modal logic (23) The system K (24) Proofs of theorems (26) L and M (33) Validity and soundness (36) The system T (41) A definition of validity for T (43) The system D (43) A note on derived rules (45) Consistency (46) Constant wff (47) Exercises — 2 (48) Notes (49) 3 The Systems S4, S5, B, Triv and Ver 51 Iterated modalities (51) The system S4 (53) Modalities in S4 (54) Validity for S4 (56) The system S5 (58) Modalities in S5 (59) Validity for S5 (60) The Brouwerian system (62) Validity for B (63) Some other systems (64) Collapsing into PC (64) Exercises — 3 (68) Notes (70) 4 Testing for validity 72 Semantic diagrams (73) Alternatives in a diagram (80) S4 diagrams (85) S5-diagrams (91) Exercises — 4 (92) Notes (93) 5 Conjunctive Normal Form 94 Equivalence transformations (94) Conjunctive normal form (96) Modal functions and modal degree (97) S5 reduction theorem (98) MCNF theorem (101) Testing formulae in MCNF (103) The completeness of S5 (105) A decision procedure for S5-validity (108) Triv and Ver again (108) Exercises — 5 (110) Notes (110) 6 Completeness 111 Maximal consistent sets of wff (113) Maximal consistent extensions (114) Consistent sets of wff in modal systems (116) Canonical models (117) The completeness of K, T, B, S4 and S5 (119) Triv and Ver again (121) Exercises — 6 (122) Notes (123) Part Two: Normal Modal Systems 7 Canonical Models 127 Temporal interpretations of modal logic (127) Ending time (131) Convergence (134) The frames of canonical models (136) A non-canonical system (139) Exercises — 7 (141) Notes (142) 8 Finite Models 145 The finite model property (145) Establishing the finite model property (145) The completeness of KW (150) Decidability (152) Systems without the finite model property (153) Exercises — 8 (156) Notes (156) 9 Incompleteness 159 Frames and models (159) An incomplete modal system (160) KH and KW (164) Completeness and the finite model property (165) General frames (166) What might we understand by incompleteness? (168) Exercises — 9 (169) Notes (170) 10 Frames and Systems 172 Frames for T, S4, B and S5 (172) Irreflexiveness (176) Compactness (177) S4.3.1 (179) First-order definability (181) Second-order logic (188) Exercises — 10 (189) Notes (190) 11 Strict Implication 193 Historical preamble (193) The \'paradoxes of implication\' (194) Material and strict implication (195) The \'Lewis\' systems (197) The system SI (198) Lemmon\'s basis for SI (199) The system S2 (200) The system S3 (200) Validity in S2 and S3 (201) Entailment (202) Exercises — 11 (205) Notes (206) 12 Glimpses Beyond 210 Axiomatic PC (210) Natural deduction (211) Multiply modal logics (217) The expressive power of multi-modal logics (219) Propositional symbols (220) Dynamic logic (220) Neighbourhood semantics (221) Intermediate logics (224) \'Syntactical\' approaches to modality (225) Probabilistic semantics (227) Algebraic semantics (229) Exercises — 12 (229) Notes (230) Part Three: Modal Predicate Logic 13 The Lower Predicate Calculus 235 Primitive symbols and formation rules of non-modal LPC (235) Interpretation (237) The Principle of replacement (240) Axiomatization (241) Some theorems of LPC (242) Modal LPC (243) Semantics for modal LPC (243) Systems of modal predicate logic (244) Theorems of modal LPC (244) Validity and soundness (247) De re and de dicto (250) Exercises — 13 (254) Notes (255) 14 The Completeness of Modal LPC 256 Canonical models for Modal LPC (256) Completeness in modal LPC (262) Incompleteness (265) Other incompleteness results (270) The monadic modal LPC (271) Exercises — 14 (272) Notes (272) 15 Expanding Domains 274 Validity without the Barcan Formula (274) Undefined formulae (277) Canonical models without BF (280) Completeness (282) Incompleteness without the Barcan Formula (283) LPC + S4.4 (S4.9) (283) Exercises — 15 (287) Notes (287) 16 Modality and Existence 289 Changing domains (289) The existence predicate (292) Axiomatization of systems with an existence predicate (293) Completeness for existence predicates (296) Incompleteness (302) Expanding languages (302) Possibilist quantification revisited (303) Kripke-style systems (304) Completeness of Kripke-style systems (306) Exercises — 16 (309) Notes (310) 17 Identity and Descriptions 312 Identity in LPC (312) Soundness and completeness (314) Definite descriptions (318) Descriptions and scope (323) Individual constants and function symbols (327) Exercises — 17 (328) Notes (329) 18 Intensional Objects 330 Contingent identity (330) Contingent identity systems (334) Quantifying over all intensional objects (335) Intensional objects and descriptions (342) Intensional predicates (344) Exercises — 18 (347) Notes (348) 19 Further Issues 349 First-order modal theories (349) Multiple indexing (350) Counterpart theory (353) Counterparts or intensional objects? (357) Notes (358) Axioms, Rules and Systems 359 Axioms for normal systems (359) Some normal systems (361) Non-normal systems (363) Modal predicate logic (365) Table I: Normal Modal Systems (367) Table II: Non-normal Modal Systems (368) Solutions to Selected Exercises 369 Bibliography 384 Index 398