دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3 نویسندگان: Carl B. Boyer, Uta C. Merzbach سری: ISBN (شابک) : 0470525487, 9780470630549 ناشر: Wiley سال نشر: 2011 تعداد صفحات: 690 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب A History of Mathematics, Third Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تاریخچه ریاضیات ، چاپ سوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نسخه جدید به روز شده راهنمای کلاسیک و جامع تاریخ ریاضیات برای بیش از چهل سال، تاریخچه ریاضیات مرجع انتخابی برای کسانی بوده است که به دنبال آشنایی با تاریخ شگفت انگیز رابطه نوع بشر با اعداد، اشکال و الگوها هستند. این نسخه اصلاح شده دارای پوشش به روز موضوعاتی مانند آخرین قضیه فرما و پوانکار است؟ حدس و گمان، علاوه بر پیشرفتهای اخیر در زمینههایی مانند نظریه گروههای محدود و اثباتهای کامپیوتری. هزاران سال ریاضیات را در یک حجم واحد و قابل دسترس، شامل اکتشافات، مفاهیم و متفکران ریاضی، از مصر باستان تا کنون میکند. ارجاعات تاریخ و یک جدول زمانی گسترده از تحولات ریاضی و کلی تاریخی. آیا به عصر افلاطون و ارسطو علاقه مند هستید یا پوانکار؟ و هیلبرت، چه بخواهید درباره قضیه فیثاغورث یا میانگین طلایی بیشتر بدانید، تاریخچه ریاضیات یک مرجع ضروری است که به شما کمک می کند تاریخ باورنکردنی ریاضیات و مردان و زنانی که آن را ایجاد کرده اند را کشف کنید.
The updated new edition of the classic and comprehensive guide to the history of mathematicsFor more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind’s relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat’s Last Theorem and the Poincar? Conjecture, in addition to recent advances in areas such as finite group theory and computer-aided proofs.Distills thousands of years of mathematics into a single, approachable volumeCovers mathematical discoveries, concepts, and thinkers, from Ancient Egypt to the presentIncludes up-to-date references and an extensive chronological table of mathematical and general historical developments.Whether you're interested in the age of Plato and Aristotle or Poincar? and Hilbert, whether you want to know more about the Pythagorean theorem or the golden mean, A History of Mathematics is an essential reference that will help you explore the incredible history of mathematics and the men and women who created it.
A History of Mathematics......Page 3
Contents......Page 7
Foreword by Isaac Asimov......Page 13
Preface to the Third Edition......Page 15
Preface to the Second Edition......Page 17
Preface to the First Edition......Page 19
Concepts and Relationships......Page 23
Early Number Bases......Page 25
Number Language and Counting......Page 27
Spatial Relationships......Page 28
The Era and the Sources......Page 30
Numbers and Fractions......Page 32
Arithmetic Operations......Page 34
\"Heap\" Problems......Page 35
Geometric Problems......Page 36
Slope Problems......Page 40
Arithmetic Pragmatism......Page 41
The Era and the Sources......Page 43
Cuneiform Writing......Page 44
Positional Numeration......Page 45
Approximations......Page 47
Tables......Page 48
Equations......Page 50
Measurements: Pythagorean Triads......Page 53
Polygonal Areas......Page 57
Geometry as Applied Arithmetic......Page 58
The Era and the Sources......Page 62
Thales and Pythagoras......Page 64
Numeration......Page 74
Arithmetic and Logistic......Page 77
Fifth-Century Athens......Page 78
Three Classical Problems......Page 79
Quadrature of Lunes......Page 80
Hippias of Elis......Page 83
Philolaus and Archytas of Tarentum......Page 85
Incommensurability......Page 87
Paradoxes of Zeno......Page 89
Deductive Reasoning......Page 92
Democritus of Abdera......Page 94
The Academy......Page 96
Aristotle......Page 110
Alexandria......Page 112
Extant Works......Page 113
The Elements......Page 115
The Siege of Syracuse......Page 131
On the Equilibriums of Planes......Page 132
On Floating Bodies......Page 133
The Sand-Reckoner......Page 134
On Spirals......Page 135
Quadrature of the Parabola......Page 137
On Conoids and Spheroids......Page 138
On the Sphere and Cylinder......Page 140
Book of Lemmas......Page 142
Semiregular Solids and Trigonometry......Page 143
The Method......Page 144
Works and Tradition......Page 149
Lost Works......Page 150
Cycles and Epicycles......Page 151
The Conics......Page 152
Changing Trends......Page 164
Eratosthenes......Page 165
Angles and Chords......Page 166
Ptolemy\'s Almagest......Page 171
Heron of Alexandria......Page 178
Nicomachus of Gerasa......Page 181
Diophantus of Alexandria......Page 182
Pappus of Alexandria......Page 186
The End of Alexandrian Dominance......Page 192
Boethius......Page 193
Athenian Fragments......Page 194
Byzantine Mathematicians......Page 195
The Oldest Known Texts......Page 197
The Nine Chapters......Page 198
Rod Numerals......Page 199
The Abacus and Decimal Fractions......Page 200
Values of Pi......Page 202
Thirteenth-Century Mathematics......Page 204
Early Mathematics in India......Page 208
The Sulbasutras......Page 209
The Siddhantas......Page 210
Aryabhata......Page 211
Numerals......Page 213
Trigonometry......Page 215
Multiplication......Page 216
Long Division......Page 217
Brahmagupta......Page 219
Indeterminate Equations......Page 221
Bhaskara......Page 222
Madhava and the Keralese School......Page 224
Arabic Conquests......Page 225
The House of Wisdom......Page 227
Al-Khwarizmi......Page 228
\'Abd Al-Hamid ibn-Turk......Page 234
Thabit ibn-Qurra......Page 235
Numerals......Page 236
Tenth- and Eleventh-Century Highlights......Page 238
Omar Khayyam......Page 240
Nasir al-Din al-Tusi......Page 242
Al-Kashi......Page 243
Introduction......Page 245
Gerbert......Page 246
The Century of Translation......Page 248
Abacists and Algorists......Page 249
Fibonacci......Page 251
Jordanus Nemorarius......Page 254
Campanus of Novara......Page 255
Archimedes Revived......Page 257
Thomas Bradwardine......Page 258
Nicole Oresme......Page 260
The Latitude of Forms......Page 261
Infinite Series......Page 263
Levi ben Gerson......Page 264
The Decline of Medieval Learning......Page 265
Overview......Page 267
Regiomontanus......Page 268
Nicolas Chuquet\'s Triparty......Page 271
Luca Pacioli\'s Summa......Page 273
German Algebras and Arithmetics......Page 275
Cardan\'s Ars Magna......Page 277
Rafael Bombelli......Page 282
Robert Recorde......Page 284
Trigonometry......Page 285
Geometry......Page 286
Renaissance Trends......Page 293
François Viéte......Page 295
Accessibility of Computation......Page 304
Decimal Fractions......Page 305
Notation......Page 307
Logarithms......Page 308
Mathematical Instruments......Page 312
Johannes Kepler......Page 318
Galileo\'s Two New Sciences......Page 322
Bonaventura Cavalieri......Page 325
Evangelista Torricelli......Page 328
Mersenne\'s Communicants......Page 330
René Descartes......Page 331
Fermat\'s Loci......Page 342
Gregory of St. Vincent......Page 347
The Theory of Numbers......Page 348
Gilles Persone de Roberval......Page 351
Girard Desargues and Projective Geometry......Page 352
Blaise Pascal......Page 354
Philippe de Lahire......Page 359
Pietro Mengoli......Page 360
Frans van Schooten......Page 361
Jan de Witt......Page 362
Johann Hudde......Page 363
Christiaan Huygens......Page 364
John Wallis......Page 370
James Gregory......Page 375
Nicolaus Mercator and William Brouncker......Page 377
Barrow\'s Method of Tangents......Page 378
Newton......Page 380
Abraham De Moivre......Page 394
Roger Cotes......Page 397
Colin Maclaurin......Page 398
Textbooks......Page 402
Rigor and Progress......Page 403
Leibniz......Page 404
The Bernoulli Family......Page 412
Tschirnhaus Transformations......Page 420
Solid Analytic Geometry......Page 421
Michel Rolle and Pierre Varignon......Page 422
The Clairauts......Page 423
Mathematics in Italy......Page 424
The Parallel Postulate......Page 425
Divergent Series......Page 426
The Life of Euler......Page 428
Notation......Page 430
Foundation of Analysis......Page 431
Logarithms and the Euler Identities......Page 435
Differential Equations......Page 436
Probability......Page 438
The Theory of Numbers......Page 439
Textbooks......Page 440
Analytic Geometry......Page 441
The Parallel Postulate: Lambert......Page 442
Men and Institutions......Page 445
The Committee on Weights and Measures......Page 446
D\'Alembert......Page 447
Bézout......Page 449
Condorcet......Page 451
Lagrange......Page 452
Monge......Page 455
Carnot......Page 460
Laplace......Page 465
Legendre......Page 468
Paris in the 1820s......Page 471
Fourier......Page 472
Cauchy......Page 474
Diffusion......Page 482
Nineteenth-Century Overview......Page 486
Gauss: Early Work......Page 487
Number Theory......Page 488
Reception of the Disquisitiones Arithmeticae......Page 491
Astronomy......Page 492
Gauss\'s Middle Years......Page 493
Differential Geometry......Page 494
Gauss\'s Later Work......Page 495
Gauss\'s Influence......Page 496
The School of Monge......Page 505
Projective Geometry: Poncelet and Chasles......Page 507
Synthetic Metric Geometry: Steiner......Page 509
Analytic Geometry......Page 511
Non-Euclidean Geometry......Page 516
Riemannian Geometry......Page 518
Spaces of Higher Dimensions......Page 520
Felix Klein......Page 521
Post-Riemannian Algebraic Geometry......Page 523
Introduction......Page 526
British Algebra and the Operational Calculus of Functions......Page 527
Boole and the Algebra of Logic......Page 528
Augustus De Morgan......Page 531
William Rowan Hamilton......Page 532
Grassmann and Ausdehnungslehre......Page 534
Cayley and Sylvester......Page 537
Linear Associative Algebras......Page 541
Algebraic and Arithmetic Integers......Page 542
Axioms of Arithmetic......Page 544
Berlin and Göttingen at Midcentury......Page 548
Riemann in Göttingen......Page 549
Mathematical Physics in Germany......Page 550
Mathematical Physics in English-Speaking Countries......Page 1
Weierstrass and Students......Page 553
The Arithmetization of Analysis......Page 555
Dedekind......Page 558
Cantor and Kronecker......Page 560
Analysis in France......Page 565
Overview......Page 570
Henri Poincaré......Page 571
David Hilbert......Page 577
Integration and Measure......Page 586
Functional Analysis and General Topology......Page 590
Algebra......Page 592
Differential Geometry and Tensor Analysis......Page 594
Probability......Page 595
Bounds and Approximations......Page 597
The 1930s and World War II......Page 599
Nicolas Bourbaki......Page 600
Homological Algebra and Category Theory......Page 602
Algebraic Geometry......Page 603
Logic and Computing......Page 604
The Fields Medals......Page 606
Overview......Page 608
The Four-Color Conjecture......Page 609
Classification of Finite Simple Groups......Page 613
Fermat\'s Last Theorem......Page 615
Poincaré\'s Query......Page 618
Future Outlook......Page 621
References......Page 623
General Bibliography......Page 655
Index......Page 669