دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 2nd rev. and enlarged ed. نویسندگان: Paul R. Halmos سری: Graduate Texts in Mathematics ISBN (شابک) : 9780387906850, 3540906851 ناشر: Springer سال نشر: 1982 تعداد صفحات: 387 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب A Hilbert Space Problem Book به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب مشکل فضایی هیلبرت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از مقدمه: \"این کتاب برای خواننده فعال نوشته شده است. بخش اول شامل مسائلی است که غالباً با تعاریف و انگیزه و گاه نتیجه گیری و نکات تاریخی به دنبال دارد... بخش دوم بسیار کوتاه است. از نکات... بخش سوم، طولانی ترین، متشکل از راه حل ها است: برهان، پاسخ ها، یا ساختارها، بسته به ماهیت مسئله... این مقدمه ای برای نظریه فضای هیلبرت نیست. یک پیش نیاز: حداقل، مطالعه عناصر نظریه فضایی هیلبرت باید همزمان با مطالعه این کتاب ادامه یابد.»
From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."
Cover ......Page 1
Preface ......Page 5
Contents ......Page 9
PROBLEMS ......Page 17
P1. Limits of quadratic forms ......Page 19
Hint ......Page 159
SOLUTIONS (see the bookmarks under each problem) ......Page 181
P3. Representation of linear functionals ......Page 20
Solution ......Page 184
P5. Continuous curves ......Page 21
Solution ......Page 185
P7. Linear dimension ......Page 22
Solution ......Page 186
P9. Infinitely total sets ......Page 23
Solution ......Page 188
Solution ......Page 189
P12. Approximate bases ......Page 24
Solution ......Page 190
P13. Vector sums ......Page 25
Solution ......Page 192
P17. Separability and dimension ......Page 26
Solution ......Page 193
Hint ......Page 160
Solution ......Page 194
P18. Measure in Hilbert space ......Page 27
3. Weak Topology (P19-30)......Page 28
P20. Weak continuity of norm and inner product ......Page 29
Solution ......Page 195
Solution ......Page 196
P26. Weak metrizability and separability ......Page 30
Solution ......Page 197
Solution ......Page 199
P28. Weak metrizability of Hilbert space ......Page 31
Hint ......Page 161
Solution ......Page 200
Solution ......Page 201
P30. Weak completeness ......Page 32
Solution ......Page 202
P32. Basis for A^2 ......Page 33
Solution ......Page 203
Solution ......Page 204
P33. Real functions in H^2 ......Page 34
Solution ......Page 206
P35. Analytic characterization of H^2 ......Page 35
Solution ......Page 207
P36. Functional Hilbert spaces ......Page 36
Hint ......Page 162
Solution ......Page 208
P38. Conjugation in functional Hilbert spaces ......Page 37
Solution ......Page 209
P43. Dirichlet problem ......Page 38
Solution ......Page 210
Solution ......Page 211
Solution ......Page 213
5. Infinite Matrices (P44-49)......Page 39
P45. Schur test ......Page 40
Solution ......Page 215
Solution ......Page 216
P48. Positivity of the Hilbert matrix ......Page 41
Solution ......Page 217
P49. Series of vectors ......Page 42
Hint ......Page 163
P50. Boundedness on bases ......Page 43
Solution ......Page 219
P51. Uniform boundedness of linear transformations ......Page 44
Solution ......Page 220
P52. Invertible transformations ......Page 45
P55. Total orthonormal sets ......Page 46
Solution ......Page 221
Solution ......Page 222
P58. Closed graph theorem ......Page 47
Solution ......Page 223
Solution ......Page 224
P60. Unbounded symmetric transformations ......Page 48
Solution ......Page 225
P61. Diagonal operators ......Page 49
Hint ......Page 164
Solution ......Page 226
P63. Spectrum of a diagonal operator ......Page 50
Solution ......Page 227
P66. Boundedness of multiplications ......Page 51
Solution ......Page 228
Solution ......Page 229
P68. Multiplications on functional Hilbert spaces ......Page 52
Solution ......Page 230
P69. Multipliers of functional Hilbert spaces ......Page 53
Solution ......Page 231
8. Operator Matrices (P70-72)......Page 54
P71. Operator determinants ......Page 55
Solution ......Page 233
Solution ......Page 234
P72. Operator determinants with a finite entry ......Page 56
Hint ......Page 165
Solution ......Page 237
9. Properties of Spectra (P73-78)......Page 57
P75. Similarity and spectrum ......Page 58
Solution ......Page 238
Solution ......Page 239
P78. Boundary of spectrum ......Page 59
Solution ......Page 240
P81. Spectral parts of a multiplication ......Page 60
Solution ......Page 242
P83. Structure of the set of eigenvectors ......Page 61
Hint ......Page 166
Solution ......Page 243
Solution ......Page 244
P85. Spectrum of a functional multiplication ......Page 62
Solution ......Page 245
P86. Analyticity of resolvents ......Page 63
Solution ......Page 247
P88. Spectral radius ......Page 64
Solution ......Page 248
P89. Weighted shifts ......Page 65
Solution ......Page 249
P93. Eigenvalues of weighted shifts ......Page 66
Solution ......Page 250
P94. Approximate point spectrum of a weighted shift ......Page 67
Hint ......Page 167
Solution ......Page 251
P96. One-point spectrum ......Page 68
Solution ......Page 252
P98. Spectrum of a direct sum ......Page 69
Solution ......Page 253
P99. Metric space of operators ......Page 70
Solution ......Page 255
P101. Interior of conjugate class ......Page 71
Solution ......Page 256
P103. Semicontinuity of spectrum ......Page 72
Solution ......Page 257
P105. Normal continuity of spectrum ......Page 73
Solution ......Page 258
Solution ......Page 259
P106. Quasinilpotent perturbations of spectra ......Page 74
Solution ......Page 260
13. Operator Topologies (P107-115)......Page 75
P107. Topologies for operators ......Page 76
Hint ......Page 168
Solution ......Page 262
P111. Continuity of multiplication ......Page 77
Solution ......Page 263
Solution ......Page 264
P115. Weak convergence of projections ......Page 78
Solution ......Page 265
Solution ......Page 266
P118. Strong operator versus weak vector convergence ......Page 79
Solution ......Page 267
Solution ......Page 268
P122. Infimum of two projections ......Page 80
Solution ......Page 269
Hint ......Page 169
Solution ......Page 270
15. Partial Isometries (P123-133)......Page 82
P125. Polynomially diagonal operators ......Page 84
Solution ......Page 272
Solution ......Page 273
P126. Continuity of the functional calculus ......Page 85
P127. Partial isometries ......Page 86
Solution ......Page 274
P130. Rank, co-rank, and nullity ......Page 87
Solution ......Page 275
P132. Unitary equivalence for partial isometries ......Page 88
Solution ......Page 276
Hint ......Page 170
P133. Spectrum of a partial isometry ......Page 89
Solution ......Page 277
P134. Polar decomposition ......Page 90
Solution ......Page 278
P137. Quasinormal operators ......Page 91
Solution ......Page 279
Solution ......Page 280
P141. Connectedness of invertible operators ......Page 92
Solution ......Page 281
Solution ......Page 282
P143. Products of symmetries ......Page 93
Solution ......Page 284
P146. Commutant of the bilateral shift ......Page 94
Hint ......Page 171
Solution ......Page 285
Solution ......Page 286
P148. Commutant of the unilateral shift as limit ......Page 95
Solution ......Page 287
P151. Square roots of shifts ......Page 96
Solution ......Page 288
Solution ......Page 289
P153. Similarity to parts of shifts ......Page 97
Solution ......Page 290
Solution ......Page 291
P155. Wandering subspaces ......Page 98
Solution ......Page 292
Solution ......Page 293
P157. Invariant subspaces of the shift ......Page 99
Solution ......Page 294
Hint ......Page 172
P158. F. and M. Riesz theorem ......Page 100
Solution ......Page 295
P159. Reducible weighted shifts ......Page 101
18. Cyclic Vectors (P160-168)......Page 102
P160. Cyclic vectors ......Page 103
Solution ......Page 297
P164. Cyclic vectors of adjoints ......Page 104
Solution ......Page 298
Solution ......Page 299
P168. Dense orbits ......Page 105
Solution ......Page 300
Solution ......Page 301
Hint ......Page 173
Solution ......Page 302
P169. Mixed continuity ......Page 106
Solution ......Page 304
P170. Compact operators ......Page 107
Solution ......Page 305
P172. Normal compact operators ......Page 108
Solution ......Page 306
P175. Limits of operators of finite rank ......Page 110
Solution ......Page 307
Solution ......Page 308
P178. Square root of a compact operator ......Page 111
Solution ......Page 310
P182. Weyl\'s theorem ......Page 112
Hint ......Page 174
Solution ......Page 311
Solution ......Page 312
P185. Distance from shift to compact operators ......Page 113
Solution ......Page 313
P186. Bounded Volterra kernels ......Page 114
Solution ......Page 314
P187. Unbounded Volterra kernels ......Page 115
Solution ......Page 315
P190. Norm 1, spectrum {1} ......Page 116
Solution ......Page 316
Solution ......Page 317
Solution ......Page 318
P191. Donoghue lattice ......Page 118
21. Subnormal Operators (P192-209)......Page 119
P193. Algebras of normal operators ......Page 120
Hint ......Page 175
Solution ......Page 320
Solution ......Page 321
P194. Spectral measure of the unit disc ......Page 121
P198. Polynomials in the shift ......Page 122
Solution ......Page 322
Solution ......Page 323
P202. Extensions of finite co-dimension ......Page 123
Solution ......Page 324
Solution ......Page 325
P204. Normal and subnormal partial isometries ......Page 125
Hint ......Page 176
Solution ......Page 326
P207. Hyponormal, compact imaginary part ......Page 126
Solution ......Page 327
Solution ......Page 328
P209. Powers of hyponormal operators ......Page 127
Solution ......Page 329
22. Numerical Range (P210-221)......Page 128
P210. Toeplitz-Hausdorff theorem ......Page 129
Solution ......Page 330
P212. Closure of numerical range ......Page 130
Solution ......Page 331
Solution ......Page 332
P215. Quasinilpotence and numerical range ......Page 131
Solution ......Page 333
Solution ......Page 334
P217. Subnormality and numerical range ......Page 132
Hint ......Page 177
P219. Normaloid, convexoid, and spectraloid operators ......Page 133
Solution ......Page 335
P220. Continuity of numerical range ......Page 134
Solution ......Page 336
P221. Power inequality ......Page 135
23. Unitary Dilations (P222-229)......Page 136
P223. Images of subspaces ......Page 137
Solution ......Page 338
Solution ......Page 339
P224. Weak closures and dilations ......Page 138
Solution ......Page 340
P226. Strong limits of hyponormal operators ......Page 140
Hint ......Page 178
Solution ......Page 341
P227. Unitary power dilations ......Page 141
Solution ......Page 342
P228. Ergodic theorem ......Page 142
P229. von Neumann\'s inequality ......Page 143
Solution ......Page 343
P230. Commutators ......Page 144
Solution ......Page 345
P231. Limits of commutators ......Page 145
Solution ......Page 346
P233. Distance from a commutator to the identity ......Page 146
Solution ......Page 347
P235. Direct sums as commutators ......Page 148
Solution ......Page 348
Solution ......Page 349
P237. Projections as self-commutators ......Page 149
Hint ......Page 179
Solution ......Page 350
P240. Commutator subgroup ......Page 150
Solution ......Page 351
Solution ......Page 352
P241. Laurent operators and matrices ......Page 151
Solution ......Page 354
P242. Toeplitz operators and matrices ......Page 152
P245. Spectral inclusion theorem for Toeplitz operators ......Page 154
Solution ......Page 356
Solution ......Page 357
Solution ......Page 358
P248. Eigenvalues of Hermitian Toeplitz operators ......Page 155
Solution ......Page 359
Solution ......Page 360
Hint ......Page 180
Solution ......Page 361
P250. Spectrum of a Hermitian Toeplitz operator ......Page 156
HINTS (see the bookmarks under each problem) ......Page 157
References ......Page 363
List of Symbols ......Page 371
Index ......Page 373
Back Cover......Page 386