دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Chirag Shah
سری:
ISBN (شابک) : 1108472443, 9781108472449
ناشر: Cambridge University Press
سال نشر: 2020
تعداد صفحات: 460
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب A Hands-On Introduction to Data Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای عملی بر علم داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با استفاده از یک رویکرد عملی که بدون دانش قبلی از موضوع است، حوزه علم داده را به شیوه ای کاربردی و در دسترس معرفی می کند. ایدهها و تکنیکهای بنیادی علم داده بهطور مستقل از فناوری ارائه میشوند و به دانشآموزان این امکان را میدهند که بدون پیشزمینه فنی قوی، به راحتی درک محکمی از موضوع ایجاد کنند، و همچنین مطالبی ارائه میشود که حتی پس از تغییر ابزارها و فناوریها ارتباط مستمری خواهند داشت. این کتاب با استفاده از ابزارهای معروف علم داده مانند پایتون و R، نمونههای بسیاری از برنامههای کاربردی واقعی را با تمرین از دادههای کوچک تا بزرگ ارائه میکند. مجموعه ای از مطالب آنلاین هم برای مربیان و هم برای دانش آموزان مکمل قوی برای کتاب است، از جمله مجموعه داده ها، اسلایدهای فصل، راه حل ها، امتحانات نمونه و پیشنهادات برنامه درسی. این کتاب درسی سطح ابتدایی برای خوانندگانی از طیف وسیعی از رشته ها که مایل به ایجاد دانش عملی و کاربردی از علم داده هستند، ایده آل است.
This book introduces the field of data science in a practical and accessible manner, using a hands-on approach that assumes no prior knowledge of the subject. The foundational ideas and techniques of data science are provided independently from technology, allowing students to easily develop a firm understanding of the subject without a strong technical background, as well as being presented with material that will have continual relevance even after tools and technologies change. Using popular data science tools such as Python and R, the book offers many examples of real-life applications, with practice ranging from small to big data. A suite of online material for both instructors and students provides a strong supplement to the book, including datasets, chapter slides, solutions, sample exams and curriculum suggestions. This entry-level textbook is ideally suited to readers from a range of disciplines wishing to build a practical, working knowledge of data science.
Contents Preface About the Author Acknowledgments Part I: Conceptual Introductions 1 Introduction 1.1 What Is Data Science? 1.2 Where Do We See Data Science? 1.2.1 Finance 1.2.2 Public Policy 1.2.3 Politics 1.2.4 Healthcare 1.2.5 Urban Planning 1.2.6 Education 1.2.7 Libraries 1.3 How Does Data Science Relate to Other Fields? 1.3.1 Data Science and Statistics 1.3.2 Data Science and Computer Science 1.3.3 Data Science and Engineering 1.3.4 Data Science and Business Analytics 1.3.5 Data Science, Social Science, and Computational Social Science 1.4 The Relationship between Data Science and Information Science 1.4.1 Information vs. Data 1.4.2 Users in Information Science 1.4.3 Data Science in Information Schools (iSchools) 1.5 Computational Thinking 1.6 Skills for Data Science 1.7 Tools for Data Science 1.8 Issues of Ethics, Bias, and Privacy in Data Science Summary Key Terms Conceptual Questions Hands-On Problems 2 Data 2.1 Introduction 2.2 Data Types 2.2.1 Structured Data 2.2.2 Unstructured Data 2.2.3 Challenges with Unstructured Data 2.3 Data Collections 2.3.1 Open Data 2.3.2 Social Media Data 2.3.3 Multimodal Data 2.3.4 Data Storage and Presentation 2.4 Data Pre-processing 2.4.1 Data Cleaning 2.4.2 Data Integration 2.4.3 Data Transformation 2.4.4 Data Reduction 2.4.5 Data Discretization Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources 3 Techniques 3.1 Introduction 3.2 Data Analysis and Data Analytics 3.3 Descriptive Analysis 3.3.1 Variables 3.3.2 Frequency Distribution 3.3.3 Measures of Centrality 3.3.4 Dispersion of a Distribution 3.4 Diagnostic Analytics 3.4.1 Correlations 3.5 Predictive Analytics 3.6 Prescriptive Analytics 3.7 Exploratory Analysis 3.8 Mechanistic Analysis 3.8.1 Regression Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources Part II: Tools for Data Science 4 UNIX 4.1 Introduction 4.2 Getting Access to UNIX 4.3 Connecting to a UNIX Server 4.3.1 SSH 4.3.2 FTP/SCP/SFTP 4.4 Basic Commands 4.4.1 File and Directory Manipulation Commands 4.4.2 Process-Related Commands 4.4.3 Other Useful Commands 4.4.4 Shortcuts 4.5 Editing on UNIX 4.5.1 The vi Editor 4.5.2 The Emacs Editor 4.6 Redirections and Piping 4.7 Solving Small Problems with UNIX Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources 5 Python 5.1 Introduction 5.2 Getting Access to Python 5.2.1 Download and Install Python 5.2.2 Running Python through Console 5.2.3 Using Python through Integrated Development Environment (IDE) 5.3 Basic Examples 5.4 Control Structures 5.5 Statistics Essentials 5.5.1 Importing Data 5.5.2 Plotting the Data 5.5.3 Correlation 5.5.4 Linear Regression 5.5.5 Multiple Linear Regression 5.6 Introduction to Machine Learning 5.6.1 What Is Machine Learning? 5.6.2 Classification (Supervised Learning) 5.6.3 Clustering (Unsupervised Learning) 5.6.4 Density Estimation (Unsupervised Learning) Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources 6 R 6.1 Introduction 6.2 Getting Access to R 6.3 Getting Started with R 6.3.1 Basics 6.3.2 Control Structures 6.3.3 Functions 6.3.4 Importing Data 6.4 Graphics and Data Visualization 6.4.1 Installing ggplot2 6.4.2 Loading the Data 6.4.3 Plotting the Data 6.5 Statistics and Machine Learning 6.5.1 Basic Statistics 6.5.2 Regression 6.5.3 Classification 6.5.4 Clustering Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources 7 MySQL 7.1 Introduction 7.2 Getting Started with MySQL 7.2.1 Obtaining MySQL 7.2.2 Logging in to MySQL 7.3 Creating and Inserting Records 7.3.1 Importing Data 7.3.2 Creating a Table 7.3.3 Inserting Records 7.4 Retrieving Records 7.4.1 Reading Details about Tables 7.4.2 Retrieving Information from Tables 7.5 Searching in MySQL 7.5.1 Searching within Field Values 7.5.2 Full-Text Searching with Indexing 7.6 Accessing MySQL with Python 7.7 Accessing MySQL with R 7.8 Introduction to Other Popular Databases 7.8.1 NoSQL 7.8.2 MongoDB 7.8.3 Google BigQuery Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources Part III: Machine Learning for Data Science 8 Machine Learning Introduction and Regression 8.1 Introduction 8.2 What Is Machine Learning? 8.3 Regression 8.4 Gradient Descent Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources 9 Supervised Learning 9.1 Introduction 9.2 Logistic Regression 9.3 Softmax Regression 9.4 Classification with kNN 9.5 Decision Tree 9.5.1 Decision Rule 9.5.2 Classification Rule 9.5.3 Association Rule 9.6 Random Forest 9.7 Naïve Bayes 9.8 Support Vector Machine (SVM) Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources 10 Unsupervised Learning 10.1 Introduction 10.2 Agglomerative Clustering 10.3 Divisive Clustering 10.4 Expectation Maximization (EM) 10.5 Introduction to Reinforcement Learning Summary Key Terms Conceptual Questions Hands-On Problems Further Reading and Resources Part IV: Applications, Evaluations, and Methods 11 Hands-On with Solving Data Problems 11.1 Introduction 11.2 Collecting and Analyzing Twitter Data 11.3 Collecting and Analyzing YouTube Data 11.4 Analyzing Yelp Reviews and Ratings Summary Key Terms Conceptual Questions Practice Questions 12 Data Collection, Experimentation, and Evaluation 12.1 Introduction 12.2 Data Collection Methods 12.2.1 Surveys 12.2.2 Survey Question Types 12.2.3 Survey Audience 12.2.4 Survey Services 12.2.5 Analyzing Survey Data 12.2.6 Pros and Cons of Surveys 12.2.7 Interviews and Focus Groups 12.2.8 Why Do an Interview? 12.2.9 Why Focus Groups? 12.2.10 Interview or Focus Group Procedure 12.2.11 Analyzing Interview Data 12.2.12 Pros and Cons of Interviews and Focus Groups 12.2.13 Log and Diary Data 12.2.14 User Studies in Lab and Field 12.3 Picking Data Collection and Analysis Methods 12.3.1 Introduction to Quantitative Methods 12.3.2 Introduction to Qualitative Methods 12.3.3 Mixed Method Studies 12.4 Evaluation 12.4.1 Comparing Models 12.4.2 Training–Testing and A/B Testing 12.4.3 Cross-Validation Summary Key Terms Conceptual Questions Further Reading and Resources Appendices Appendix A:Useful Formulas from Differential Calculus Further Reading and Resources Appendix B:Useful Formulas from Probability Further Reading and Resources Appendix C:Useful Resources C.1 Tutorials C.2 Tools Appendix D:Installing and Configuring Tools D.1 Anaconda D.2 IPython (Jupyter) Notebook D.3 Spyder D.4 R D.5 RStudio Appendix E:Datasets and Data Challenges E.1 Kaggle E.2 RecSys E.3 WSDM E.4 KDD Cup Appendix F:Using Cloud Services F.1 Google Cloud Platform F.2 Hadoop F.3 Microsoft Azure F.4 Amazon Web Services (AWS) Appendix G:Data Science Jobs G.1 Marketing G.2 Corporate Retail and Sales G.3 Legal G.4 Health and Human Services Appendix H:Data Science and Ethics H.1 Data Supply Chain H.2 Bias and Inclusion H.3 Considering Best Practices and Codes of Conduct Appendix I:Data Science for Social Good Index