دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 6
نویسندگان: Peter Kennedy
سری:
ISBN (شابک) : 1405182571, 9781405182577
ناشر: Wiley-Blackwell
سال نشر: 2008
تعداد صفحات: 599
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب A Guide to Econometrics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای اقتصاد سنجی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents ... 6 Preface ... 11 Dedication ... 13 1 Introduction ... 14 1.1 What is Econometrics? ... 14 1.2 The Disturbance Term ... 15 1.3 Estimates and Estimators ... 17 1.4 Good and Preferred Estimators ... 18 General Notes ... 19 1.2 The Disturbance Term ... 22 1.3 Estimates and Estimators ... 22 1.4 Good and Prefe rred Estimators ... 22 2 Criteria for Estimators ... 24 2.1 Introduction ... 24 2.2 Computational Cost ... 24 2.3 Least Squares ... 25 2.4 Highest R2 ... 26 2.5 Unbiasedness ... 27 2.6 Efficiency ... 29 2.7 Mean Square Error ... 30 2.8 Asymptotic Properties ... 31 2.9 Maximum Likelihood ... 34 2.10 Monte Carlo Studies ... 35 2.11 Adding Up ... 38 General Notes ... 39 2.2 Computational Cost ... 39 2.4 Highest R2 ... 39 2.3 Least Squares ... 39 2.5 Unbiasedness ... 41 3 The Classical Liner Regression Model ... 53 3.1 Textbooks as Catalogs ... 53 3.2 The Five Assumptions ... 54 3.3 The OLS Estimator in the CLR Model ... 56 General Notes ... 57 3.1 Textbooks as Catalogs ... 57 3.3 The OLS Estimator in the CLR Model ... 57 3.2 The Five Assumptions ... 60 3.3 The OLS Estimator in the CLR Model ... 61 4 Interval Estimation and Hypothesis Testing ... 64 4.1 Introduction ... 64 4.2 Testing a Single Hypothesis: The t Test ... 64 4.3 Testing a Joint Hypothesis: the F Test ... 65 4.4 Interval Estimation for a Parameter Vector ... 67 4.5 LR,W, and LM Statistics ... 69 4.6 Bootstrapping ... 71 General Notes ... 72 4.1 Introduction ... 72 4.2 Testing a Single Hypothesis: The t Test ... 75 4.3 Testing a Joint Hypothesis: The F Test ... 75 4.4 Interval Estimation fo r a Parameter Vector ... 77 4.5 LR,W, and LM Statistics ... 77 4.6 Bootstrapping ... 78 Technical Notes ... 79 4.1 Introduction ... 80 4.3 Testing a Joint Hypothesis: The F Test ... 81 4.5 LR, W, and LM Statistics ... 81 4.6 Bootstrapping ... 82 5 Specification ... 84 5.1 Introduction ... 84 5.2 Three Methodologies ... 85 5.2.1 Average Economic Regression (AER) ... 85 5.2.2 Test,Test,Test (TTT) ... 86 5.2.3 Fragility Analysis ... 86 5.3 General Principles for Specification ... 88 5.4 Misspecification Tests/D iagnostics ... 89 5.5 R^2 Again ... 92 General Notes ... 94 5.1 Introduction ... 94 5.2 Three Methodologies ... 94 5.3 General Principles for Specification ... 98 5.4 Misspecifica tion Tests/Diagnostics ... 100 5.5 R^2 Again ... 102 Technical Notes ... 102 5.1 Introduction ... 102 5.2 Three Methodologies ... 102 5.4 Misspecification Tests/D iagnostics ... 103 6 Violating Assumption 1: Wrong Regressors, Nonliearities, Parameter Inconsistency ... 106 6.1 Introduction ... 106 6.2 Incorrect Set of Independent Variables ... 106 6.3 Nonlinearity ... 108 6.3.1 Transformations ... 108 6.3.2 Computer-Assisted Numerical Techniques ... 109 6.4 Changing Parameter Values ... 110 6.4.1 Switching Regimes ... 111 6.4.2 Parameters Determined by Other Variables ... 111 6.4.3 Random Coefficients ... 112 General Notes ... 113 6.1 Introduction ... 113 6.2 Incorrect Set of Independent Variables ... 113 6.3 Nonlinearity ... 115 6.4 Changing Parameter Values ... 118 Technical Notes ... 119 6.3 Nonlinearity ... 119 6.4 Changing Parameter Values ... 121 7 Violating Assumption Two: Nonzero Expected Disturbance ... 122 8 Violating Assumption Three: Nonspherical Disturbances ... 125 8.1 Introduction ... 125 8.2 Consequences of Violation ... 126 8.3 Heteroskedasticity ... 128 8.3.1 The Eyeball Test ... 129 8.3.2 The Goldfeld-Quandt Test ... 129 8.3.3 The Breusch-Pagan Test ... 129 8.3.4 The White Test ... 130 8.4 Autocorrelated Disturbances ... 131 8.4.1 Cochrane-Orcutt Iterative Least Squares ... 134 8.4.2 Durbin\'s Two-Stage Method ... 134 8.4.3 Hildreth-Lu Search Procedure ... 134 8.4.4 Maximum Likelihood ... 134 8.5 Generalized Method of Moments ... 135 General Notes ... 136 8.1 Introduction ... 136 8.2 Consequences of Violation ... 136 8.3 Heteroskedasticity ... 137 8.4 Autocorrelated Disturbances ... 139 Technical Notes ... 142 8.1 Introduction ... 142 8.2 Consequences of Violation ... 142 8.3 Heteroskedasticity ... 144 8.4 Autocorrelated Disturbances ... 145 8.5 Generalized Method of Moments ... 147 9 Violating Assumption Four: Instrumental Variable Estimation ... 150 9.1 Introduction ... 150 9.2 The IV Estimator ... 154 9.3 IV Issues ... 157 9.3.1 How can we test if errors are correlated with regressors? ... 157 9.3.2 How can we test if an instrument is uncorrelated with the error? ... 157 9.3.3 How can we test if an instrument\'s correlation with the troublesome variable is strong enough? ... 158 9.3.4 How should we interpret IV estimates? ... 158 General Notes ... 159 9.1 Introduction ... 159 9.2 The IV Estimator ... 160 9.3 IV Issues ... 162 Technical Notes ... 164 9.1 Introduction ... 164 9.2 IV Estimation ... 164 9.3 IV Issues ... 166 10 Violating Assumpton Four: Measurement Errors and Autoregression ... 170 10.1 Errors in Variables ... 170 10.1.1 Weighted Regression ... 171 10.1.2 Instrumental Variables ... 172 10.1.3 Linear Structural Relations ... 173 10.2 Autoregression ... 173 General Notes ... 176 10.1 Errors in Variables ... 176 10.2 Autoregression ... 179 Technical Notes ... 180 10.1 Errors in Variables ... 180 10.2 Autoregression ... 181 11 Violating Assumption Four: Simultaneous Equations ... 184 11.1 Introduction ... 184 11.2 Identification ... 186 11.3 Single-Equation Methods ... 189 11.3.1 Ordinary Least Squares ... 190 11.3.2 Indirect Least Squares ... 190 11.3.3 The Instrumental Variable (IV) Technique ... 191 11.3.4 Two-Stage Least Squares (2SLS) ... 191 11.3.5 Limited Info rmation, Maximum Likelihood (LI/ML) ... 192 11.4 Systems Methods ... 192 11.4.1Three-Stage Least Squares (3SLS) ... 193 11.4.2 Full Information,Maximum Likelihood (FUML) ... 194 General Notes ... 194 11.l Introduction ... 194 11.2 Identification ... 196 11.3 Single-Equation Methods ... 197 11.4 Systems Methods ... 198 Technical Notes ... 199 11.1 Introduction ... 199 11.2 Identification ... 200 11.3 Single-Equation Methods ... 201 11.4 Systems Methods ... 203 12 Violating Assumtion Five: Multicollinearity ... 205 12.1 Introduction ... 205 12.2 Consequences ... 206 12.3 Detecting Multicollinearity ... 207 12.4 What To Do ... 209 12.4.1 Do Nothing ... 209 12.4.2 Incorporate Additional Information ... 209 General Notes ... 211 12.2 Consequences ... 211 12.3 Detecting Multicollinearity ... 212 12.4 What to Do ... 212 Technical Notes ... 215 13 Incorporating Extraneous Information ... 216 13.1 Introduction ... 216 13.2 Exact Restrictions ... 216 13.3 Stochastic Restrictions ... 217 13.4 Pre-Test Estimators ... 217 13.5 Extraneous Information and MSE ... 219 General Notes ... 220 13.1 Introduction ... 220 13.2 Exact Restrictions ... 221 13.3 Stochastic Restrictions ... 222 13.4 Pre-test Estimators ... 223 13.5 Extraneous Information and MSE ... 223 Technical Notes ... 224 13.3 Stochastic Restrictions ... 224 13.5 Extraneous Information and MSE ... 225 14 The Bayesian Approach ... 226 14.1 Introduction ... 226 14.2 What is a Bayesian Analysis? ... 226 14.3 Advantages of the Bayesian Approach ... 229 14.4 Overcoming Practitioners\' Complaints ... 230 14.4.1 Choosing a Prior ... 230 14.4.2 Finding and Using the Posterior ... 232 14.4.3 Convincing Others ... 232 General Notes ... 233 14.1 Introduction ... 233 14.2 What is a Bayesian Analysis? ... 233 14.3 Advantages of the Bayesian Approach ... 236 14.4 Overcoming Practitioners\' Complaints ... 237 Technical Notes ... 239 14.1 Introduction ... 239 14.2 What is a Bayesian Analysis? ... 239 14.3 Advantages of the Bayesian Approach ... 241 14.4 Overcoming Practitioners\' Complaints ... 243 15 Dummy Variables ... 245 15.1 Introduction ... 245 15.2 Interpretation ... 246 15.3 Adding Another Qualitative Variable ... 247 15.4 Interacting with Quantitative Variables ... 248 15.5 Observation-Specific Dummies ... 249 General Notes ... 250 15.1 Introduction ... 250 1 5.4 Interacting with Quantitative Variables ... 251 15.5 Observation-Specific Dummies ... 252 Technical Notes ... 253 16 Qualitative Dependent Variables ... 254 16.1 Dichotomous Dependent Variables ... 254 16.2 Polychotomous Dependent Variables ... 257 16.3 Ordered Logit/Probit ... 258 16.4 Count Data ... 259 General Notes ... 259 16.1 Dichotomous Dependent Variables ... 259 16.3 Ordered Logit/Probit ... 266 16.4 Count Data ... 266 Technical Notes ... 267 16.1 Dichotomous Dependent Variables ... 267 16.2 Polychotomous Dependent Variables ... 269 1 6.3 Ordered Logit/Probit ... 271 16.4 Count Data ... 272 17 Limited Dependent Variables ... 275 17.1 Introduction ... 275 17.2 The Tobit Model ... 276 17.3 Sample Selection ... 278 17.4 Duration Models ... 280 General Notes ... 282 17.1 Introduction ... 282 17.2 The Tobit Model ... 282 17.3 Sample Selection ... 283 17.4 Duration Models ... 286 Technical Notes ... 286 17.1 Introduction ... 286 17.2 The Tobit Model ... 287 17.3 Sample Selection ... 288 17.4 Duration Models ... 289 18 Panel Data ... 294 18.1 Introduction ... 294 18.2 Allowing for Different Intercepts ... 295 18.3 Fixed Versus Random Effects ... 297 18.4 Short Run Versus Long Run ... 299 18.5 Long, Narrow Panels ... 300 General Notes ... 301 18.1 Introduction ... 301 18.2 Allowing for Different Intercepts ... 302 18.3 Fixed Versus Random Effects ... 303 18.4 Short Run Versus Long Run ... 304 18.5 Long,Narrow Panels ... 305 Technical Notes ... 305 18.2 Allowing for Different Intercepts ... 305 18.3 Fixed versus Random Effects ... 305 18.5 Long, Narrow Panels ... 308 19 Time Series Econometrics ... 309 19.1 Introduction ... 309 19.2 ARIMA Models ... 310 19.3 VARs ... 311 19.4 Error Correction Models ... 312 19.5 Testing for Unit Roots ... 314 19.6 Cointegration ... 315 General Notes ... 317 19.1 Introduction ... 317 19.2 ARIMA Models ... 317 19.3 VARs ... 318 19.5 Testing fo r Unit Roots ... 320 19.6 Cointegration ... 322 Technical Notes ... 327 19.1 Introduction ... 327 19.2 ARIMA Models ... 327 19.3 VARs ... 333 19.4 Error Correction Models ... 335 19.5 Testing for Unit Roots ... 336 19.6 Cointegration ... 340 20 Forecasting ... 344 20.1 Introduction ... 344 20.2 Causal Forecasting/Econometric Models ... 345 20.3 Time Series Analysis ... 346 20.4 Forecasting Accuracy ... 347 General Notes ... 348 20.1 Introduction ... 348 20.2 Causal Forecasting/Econometric Models ... 350 20.3 Time Series Analysis ... 352 20.4 Forecasting Accuracy ... 353 Technical Notes ... 355 20.l Introduction ... 355 20.2 Causal Forecasting/E conometric Models ... 356 20.4 Forecasting Accuracy ... 356 21 Robust Estimation ... 358 21.1 Introduction ... 358 21.2 Outliers and Influential Observations ... 359 21.3 Guarding Against Influential Observations ... 360 21.4 Artificial Neural Networks ... 362 21.5 Nonparametric Estimation ... 363 General Notes ... 365 21.1 Introduction ... 365 21.2 Outliers and Influential Observations ... 365 21.3 Guarding against Influential Observations ... 366 21.4 Artificial Neural Networks ... 367 21.5 Nonparametric Estimation ... 368 Technical Notes ... 369 21.3 Guarding against Influential Observation ... 369 21.4 Artificial Neural Networks ... 370 21.5 Nonparametric Estimation ... 370 22 Applied Econometrics ... 374 22.1 Introduction ... 374 22.2 The Ten Commandments of Applied Econometrics ... 375 22.3 Getting the Wrong Sign ... 381 22.4 Common Mistakes ... 384 22.5 What do Practitioners Need to Know? ... 386 General Notes ... 387 22.1 Introduction ... 387 22.2 The Ten Commandments of Applied Econometrics ... 388 22.3 Getting the Wrong Sign ... 391 22.4 Common Mistakes ... 392 22.5 What do Practitioners Need to Know? ... 392 Technical Notes ... 396 22.2 The Ten Commandments of Applied Econometrics ... 396 22.5 What do Practitioners Need to Know? ... 396 23 Computational Considerations ... 398 23.1 Introduction ... 398 23.2 Optimizing via a Computer Search ... 399 23.3 Estimating Integrals via Simulation ... 401 23.4 Drawing Observations from Awkward Distributions ... 403 General Notes ... 405 23.1 Introduction ... 405 23.2 Optimizing via a Computer Search ... 405 23.3 Estimating Integrals via Simulation ... 408 23.4 Drawing Observations from Awkward Distributions ... 409 Technical Notes ... 410 23.2 Optimizing via a Computer Search ... 410 23.3 Estimating Integrals via Simulation ... 413 23.4 Drawing Observations from Awkward Distributions ... 414 Appendix A Sampling Distributions ... 416 I An Example ... 416 2 Implications for Studying Econometrics ... 417 3 Calculating Sampling Distributions ... 418 Appendix B All About Variance ... 420 1 Definition ... 420 2 Estimation ... 421 3 Well-Known Formulas ... 421 4 More-General Formulas ... 421 5 Examples of the More-General Formulas ... 421 6 Cramer-Rao Lower Bound ... 423 Appendix C A Primer on Asymptotics ... 425 1 Convergence in Probability ... 425 2 Convergence in Distribution ... 427 3 Asymptotic Distributions ... 427 Notes ... 428 Appendix D Exercises ... 430 Appendix E Answers to Even-Numbered Questions ... 492 Glossary ... 516 Bibliography ... 524 Name Index ... 576 Subject Index ... 586