دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Peiqing Liu
سری:
ISBN (شابک) : 9789813366602
ناشر: Springer Singapore
سال نشر:
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 276 مگابایت
در صورت تبدیل فایل کتاب A General Theory of Fluid Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه کلی مکانیک سیالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface About This Book Contents 1 Foundation of Fluid Mechanics 1.1 Combination of Early Development of Fluid Dynamics with Calculus 1.2 Methods of Describing Fluid Motion 1.3 Establishment and Application of Differential Equations for Ideal Fluid Motion 1.4 Differential Equation of Viscous Fluid Motion and Vortex Transport Equation 1.5 Establishment and Application of Boundary Layer Theory 1.6 Laminar Flow Transition Phenomenon and Stability Theory 1.7 Turbulence Phenomenon and Its Characteristics 1.8 Statistical Theory of Turbulence 1.9 Engineering Turbulence Theory 1.10 Turbulence Model 1.11 Turbulence Advanced Numerical Simulation Technology 1.12 Multi-scale Discussions of Turbulent Eddies 2 Aerodynamics 2.1 Development of Aerodynamics 2.2 Low-Speed Airfoil Flow 2.3 Development and Influence Mechanism of Boundary Layer Near Airfoil Surface 2.4 Low-Speed Flow Around Wing 2.5 Basic Theory of Compressible Flow 2.6 Solution of Compressible Flow 2.7 Hypersonic Aerodynamics 2.8 Principle of Aeroacoustics 2.9 Stall Characteristics of Low-Speed Airfoil and Wing 2.10 Interaction Between Shock Wave and Boundary Layer in Supersonic Flow 2.11 The Leading Role of Aerodynamics in the Development of Modern Aircraft 3 Hydrodynamics 3.1 Development of Hydrodynamics 3.2 Liquid Motion 3.2.1 Ideal Liquid Motion 3.2.2 Viscous Liquid Motion 3.2.3 Cavitation and Cavitation Erosion 3.2.4 Multiphase Flow 3.2.5 Non-newtonian Fluid Flow 3.2.6 Non Pressure Flow (Open Flow) 3.2.7 Pressure Flow 3.2.8 Flow Induced Vibration (Hydroelastic Problem) 3.3 One-Dimensional Flow Theory and Mechanical Energy Loss 3.3.1 Theory of One-Dimensional Flow 3.3.2 Mechanical Energy Loss 3.4 Steady Flow Along a Pressure Pipeline 3.4.1 Simple Pipe Flow 3.4.2 Water Pump System 3.4.3 Water Turbine System 3.5 Steady Flow in Open Channel 3.5.1 Overview 3.5.2 Steady Uniform Flow in Open Channel 3.5.3 Steady Nonuniform Gradually Varied Flow 3.5.4 Water Surface Curves for the Steady Gradually Varied Flow 3.5.5 Rapidly Varied Flow in the Open Channel 3.6 Unsteady Flow in a Pressure Pipeline 3.6.1 Overview 3.6.2 Basic Equation of One-Dimensional Unsteady Flow 3.6.3 Water Hammer and Its Governing Equations 3.6.4 Water Oscillating Flow 3.7 Unsteady Gradually Varied Flow in Open Channel 3.7.1 Overview 3.7.2 Differential Equation of Unsteady Gradually Varied Flow 3.8 Fundamentals of Water Wave Hydrodynamics 3.8.1 Overview 3.8.2 Basic Characteristics of Wave Motion 3.8.3 Types of Waves 3.8.4 Linear Wave Theory (Micro Amplitude Wave Theory) 3.8.5 Wave with Finite Amplitude 3.8.6 Solitary Wave 3.9 Applications in Hydraulics 3.9.1 Water Resources and Hydropower Engineering 3.9.2 Ship Engineering 3.9.3 Lubrication and Hydraulic Transmission 3.9.4 Marine and Coastal Engineering 4 Computational Fluid Dynamics 4.1 Derivation of Computational Fluid Dynamics 4.2 Discrete Techniques and Iterative Methods 4.3 Application of Computational Fluid Dynamics 4.3.1 Numerical Solution of Low Velocity Flow 4.3.2 Numerical Solution of Transonic Flow 4.3.3 Numerical Solution of Supersonic Flow 4.4 Commercial Software for Computational Fluid Dynamics 4.5 Numerical Simulation of Flow Field for a Large Axial Flow Fan 4.5.1 Problem Description 4.5.2 The Physical Model 4.5.3 Mesh Generation and Boundary Conditions 4.5.4 Results 4.6 Numerical Simulation of Flow-Field in a Large Lowspeed Closed-Circuit Aeroacoustics Wind Tunnel 4.6.1 Problem Description 4.6.2 The Physical Model 4.6.3 Mesh Generation and Boundary Conditions 4.6.4 Results 5 Experimental Fluid Mechanics 5.1 Classical Fluid Mechanics Experiment 5.2 Similarity Principle 5.3 Application of Similarity Theory 5.4 Flow Visualization Measurement Technique 5.5 Flow Velocimetry Technique 5.6 Experimental Measurement Method for Dynamic Forces 5.7 Test Error Analysis 6 Wind and Water Tunnel Equipment 6.1 Development of Wind Tunnel Equipment 6.2 Wind Tunnel Type 6.3 Low-Speed Wind Tunnel 6.4 Introduction to Typical Low-Speed Wind Tunnels 6.5 Supersonic Wind Tunnel 6.6 Transonic Wind Tunnel 6.7 Hypersonic Wind Tunnel 6.8 Variable Density Wind Tunnel 6.9 Water Tunnel (or Channel) Equipment 7 Flight Mystery and Aerodynamic Principles 7.1 Flying Fantasy 7.2 Exploratory Cognition of Flight 7.3 Rapid Development of Aircraft 7.4 Flight Principle 7.5 Wing Shape and Aerodynamic Coefficient 7.6 Supercritical Wing 7.7 Winglet 7.8 Slender Fuselage 7.9 Moment in Stable Flight and Tail 7.10 Demand of Aircraft Power (Engine) 7.11 High-Lift Device of an Aircraft 7.12 Aircraft Landing Gear 7.13 Aircraft Aerodynamic Noise 7.14 Supersonic Aircraft 7.15 Drag Reduction Technology for Large Transport Aircraft 8 Introduction to Celebrities in Fluid Mechanics 8.1 Archimedes (287–212 B.C.) 8.2 Leonardo Da Vinci (1451–1519) 8.3 Galileo (1564–1642) 8.4 Pascal (1623–1662) 8.5 Newton (1643–1727) 8.6 Leibniz (1646–1716) 8.7 Bernoulli (1700–1782) 8.8 Euler (1707–1783) 8.9 D\'Alembert (1717–1783) 8.10 Lagrange (1736–1813) 8.11 Laplace (1749–1827) 8.12 Kelly (1773–1857) 8.13 Gauss (1777–1855) 8.14 Poisson (1781–1840) 8.15 Navier (1785–1836) 8.16 Cauchy (1789–1857) 8.17 Saint-Venant (1797–1886) 8.18 Poiseuille (1799–1869) 8.19 Darcy (1803–1858) 8.20 Froude (1810–1879) 8.21 Stokes (1819–1903) 8.22 Helmholtz (1821–1894) 8.23 Kelvin (1824–1907) 8.24 Riemann (1826–1866) 8.25 Langley (1834–1906) 8.26 Mach (1838–1916) 8.27 Reynolds (1842–1912) 8.28 Rayleigh (1842–1919) 8.29 Boussinesq (1842–1929) 8.30 Laval (1845–1913) 8.31 Joukowski (1847–1921) 8.32 Lilienthal (1848–1996) 8.33 Lamb (1849–1934) 8.34 Lorentz (1853–1928) 8.35 The Wright Brothers (1867–1912, 1871–1948) 8.36 Lanchester (1868–1946) 8.37 Prandtl (1875–1953) 8.38 Karman (1881–1963) 8.39 Taylor (1886–1975) 8.40 Zhou Peiyuan (1902–1993) 8.41 Kolmogorov (1903–1987) 8.42 Whittle (1907–1996) 8.43 Schlichting (1907–1982) 8.44 Landau (1908–1968) 8.45 Guo Yonghuai (1909–1968) 8.46 Qian Xuesen (1911–2009) 8.47 Lu Shijia (1911–1986) 8.48 Shen Yuan (1916–2004) 8.49 Batchelor (1920–2000) 8.50 Whitcomb (1921–2009) 8.51 Lighthill (1924–1998) 8.52 Zhuang Fenggan (1925–2010) Bibliography