دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Charles L Byrne
سری:
ISBN (شابک) : 9781482226560, 9781482226584
ناشر: CRC Press
سال نشر: 2015
تعداد صفحات: 313
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب A first course in optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اولین دوره بهینه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"این متن که برای دانشجویان کارشناسی ارشد و پیشرفته طراحی شده است، مقدمه معاصر بسیار مورد نیاز برای بهینه سازی را ارائه می دهد. با تاکید بر مشکلات کلی و نظریه اساسی، مسائل اساسی بهینه سازی محدود و نامحدود، برنامه ریزی خطی و محدب، الگوریتم های راه حل تکراری اساسی را پوشش می دهد. روشهای گرادیان، الگوریتم نیوتن رافسون و انواع آن، و روشهای بهینهسازی بدون محدودیت متوالی. این کتاب ابزارها و نتایج ریاضی لازم و همچنین کاربردهایی را ارائه میکند. به عنوان نظریه بازی\"-- �بیشتر بخوانید...
"Designed for graduate and advanced undergraduate students, this text provides a much-needed contemporary introduction to optimization. Emphasizing general problems and the underlying theory, it covers the fundamental problems of constrained and unconstrained optimization, linear and convex programming, fundamental iterative solution algorithms, gradient methods, the Newton-Raphson algorithm and its variants, and sequential unconstrained optimization methods. The book presents the necessary mathematical tools and results as well as applications, such as game theory"-- �Read more...
Cover S Title A First Course in Optimization © 2015 by Taylor & Francis Group LLC ISBN 978-1-4822-2658-4 (eBook - PDF) Dedication Contents Preface Overview 1. Optimization Without Calculus 1.1 Chapter Summary 1.2 The Arithmetic Mean-Geometric Mean Inequality 1.3 Applying the AGM Inequality: the Number e 1.4 Extending the AGM Inequality 1.5 Optimization Using the AGM Inequality 1.6 The H older and Minkowski Inequalities 1.6.1 H older\'s Inequality 1.6.2 Minkowski\'s Inequality 1.7 Cauchy\'s Inequality 1.8 Optimizing Using Cauchy\'s Inequality 1.9 An Inner Product for Square Matrices 1.10 Discrete Allocation Problems 1.11 Exercises 2. Geometric Programming 2.1 Chapter Summary 2.2 An Example of a GP Problem 2.3 Posynomials and the GP Problem 2.4 The Dual GP Problem 2.5 Solving the GP Problem 2.6 Solving the DGP Problem 2.6.1 The MART 2.6.2 MART I 2.6.3 MART II 2.6.4 Using the MART to Solve the DGP Problem 2.7 Constrained Geometric Programming 2.8 Exercises 3. Basic Analysis 3.1 Chapter Summary 3.2 Minima and In ma 3.3 Limits 3.4 Completeness 3.5 Continuity 3.6 Limsup and Liminf 3.7 Another View 3.8 Semi-Continuity 3.9 Exercises 4. Convex Sets 4.1 Chapter Summary 4.2 The Geometry of Real Euclidean Space 4.2.1 Inner Products 4.2.2 Cauchy\'s Inequality 4.2.3 Other Norms 4.3 A Bit of Topology 4.4 Convex Sets in RJ 4.4.1 Basic De nitions 4.4.2 Orthogonal Projection onto Convex Sets 4.5 More on Projections 4.6 Linear and A ne Operators on RJ 4.7 The Fundamental Theorems 4.7.1 Basic De nitions 4.7.2 The Separation Theorem 4.7.3 The Support Theorem 4.8 Block-Matrix Notation 4.9 Theorems of the Alternative 4.10 Another Proof of Farkas\' Lemma 4.11 Gordan\'s Theorem Revisited 4.12 Exercises 5. Vector Spaces and Matrices 5.1 Chapter Summary 5.2 Vector Spaces 5.3 Basic Linear Algebra 5.3.1 Bases and Dimension 5.3.2 The Rank of a Matrix 5.3.3 The \\Matrix Inversion Theorem 5.3.4 Systems of Linear Equations 5.3.5 Real and Complex Systems of Linear Equations 5.4 LU and QR Factorization 5.5 The LU Factorization 5.5.1 A Shortcut 5.5.2 A Warning! 5.5.3 The QR Factorization and Least Squares 5.6 Exercises 6. Linear Programming 6.1 Chapter Summary 6.2 Primal and Dual Problems 6.2.1 An Example 6.2.2 Canonical and Standard Forms 6.2.3 From Canonical to Standard and Back 6.3 Converting a Problem to PS Form 6.4 Duality Theorems 6.4.1 Weak Duality 6.4.2 Primal-Dual Methods 6.4.3 Strong Duality 6.5 A Basic Strong Duality Theorem 6.6 Another Proof 6.7 Proof of Gale\'s Strong Duality Theorem 6.8 Some Examples 6.8.1 The Diet Problem 6.8.2 The Transport Problem 6.9 The Simplex Method 6.10 Yet Another Proof 6.11 The Sherman{Morrison{Woodbury Identity 6.12 An Example of the Simplex Method 6.13 Another Example 6.14 Some Possible Di culties 6.14.1 A Third Example 6.15 Topics for Projects 6.16 Exercises 7. Matrix Games and Optimization 7.1 Chapter Summary 7.2 Two-Person Zero-Sum Games 7.3 Deterministic Solutions 7.3.1 Optimal Pure Strategies 7.4 Randomized Solutions 7.4.1 Optimal Randomized Strategies 7.4.2 An Exercise 7.4.3 The Min-Max Theorem 7.5 Symmetric Games 7.5.1 An Example of a Symmetric Game 7.5.2 Comments on the Proof of the Min-Max Theorem 7.6 Positive Games 7.6.1 Some Exercises 7.6.2 Comments 7.7 Example: The \\Blu ng\" Game 7.8 Learning the Game 7.8.1 An Iterative Approach 7.8.2 An Exercise 7.9 Non-Constant-Sum Games 7.9.1 The Prisoners\' Dilemma 7.9.2 Two Payo Matrices Needed 7.9.3 An Example: Illegal Drugs in Sports 8. Differentiation 8.1 Chapter Summary 8.2 Directional Derivative 8.2.1 De nitions 8.3 Partial Derivatives 8.4 Some Examples 8.5 G^ateaux Derivative 8.6 Fr echet Derivative 8.6.1 The De nition 8.6.2 Properties of the Fr echet Derivative 8.7 The Chain Rule 8.8 Exercises 9. Convex Functions 9.1 Chapter Summary 9.2 Functions of a Single Real Variable 9.2.1 Fundamental Theorems 9.2.2 Proof of Rolle\'s Theorem 9.2.3 Proof of the Mean Value Theorem 9.2.4 A Proof of the MVT for Integrals 9.2.5 Two Proofs of the EMVT 9.2.6 Lipschitz Continuity 9.2.7 The Convex Case 9.3 Functions of Several Real Variables 9.3.1 Continuity 9.3.2 Di erentiability 9.3.3 Second Di erentiability 9.3.4 Finding Maxima and Minima 9.3.5 Solving F(x) = 0 through Optimization 9.3.6 When Is F(x) a Gradient? 9.3.7 Lower Semi-Continuity 9.3.8 The Convex Case 9.4 Sub-Di erentials and Sub-Gradients 9.5 Sub-Gradients and Directional Derivatives 9.5.1 Some De nitions 9.5.2 Sub-Linearity 9.5.3 Sub-Di erentials and Directional Derivatives 9.5.4 An Example 9.6 Functions and Operators 9.7 Convex Sets and Convex Functions 9.8 Exercises 10. Convex Programming 10.1 Chapter Summary 10.2 The Primal Problem 10.2.1 The Perturbed Problem 10.2.2 The Sensitivity Vector and the Lagrangian 10.3 From Constrained to Unconstrained 10.4 Saddle Points 10.4.1 The Primal and Dual Problems 10.4.2 The Main Theorem 10.4.3 A Duality Approach to Optimization 10.5 The Karush{Kuhn{Tucker Theorem 10.5.1 Su cient Conditions 10.5.2 The KKT Theorem: Saddle-Point Form 10.5.3 The KKT Theorem: The Gradient Form 10.6 On Existence of Lagrange Multipliers 10.7 The Problem of Equality Constraints 10.7.1 The Problem 10.7.2 The KKT Theorem for Mixed Constraints 10.7.3 The KKT Theorem for LP 10.7.4 The Lagrangian Fallacy 10.8 Two Examples 10.8.1 A Linear Programming Problem 10.8.2 A Nonlinear Convex Programming Problem 10.9 The Dual Problem 10.9.1 When Is MP = MD? 10.9.2 The Primal-Dual Method 10.9.3 Using the KKT Theorem 10.10 Nonnegative Least-Squares Solutions 10.11 An Example in Image Reconstruction 10.12 Solving the Dual Problem 10.12.1 The Primal and Dual Problems 10.12.2 Hildreth’s Dual Algorithm 10.13 Minimum One-Norm Solutions 10.13.1 Reformulation as an LP Problem 10.13.2 Image Reconstruction 10.14 Exercises 11. Iterative Optimization 11.1 Chapter Summary 11.2 The Need for Iterative Methods 11.3 Optimizing Functions of a Single Real Variable 11.4 Iteration and Operators 11.5 The Newton{Raphson Approach 11.5.1 Functions of a Single Variable 11.5.2 Functions of Several Variables 11.6 Approximate Newton{Raphson Methods 11.6.1 Avoiding the Hessian Matrix 11.6.2 The BFGS Method 11.6.3 The Broyden Class 11.6.4 Avoiding the Gradient 11.7 Derivative-Free Methods 11.7.1 Multi-Directional Search Algorithms 11.7.2 The Nelder{Mead Algorithm 11.7.3 Comments on the Nelder{Mead Algorithm 12. Solving Systems of Linear Equations 12.1 Chapter Summary 12.2 Arbitrary Systems of Linear Equations 12.2.1 Under-Determined Systems of Linear Equations 12.2.2 Over-Determined Systems of Linear Equations 12.2.3 Landweber\'s Method 12.2.4 The Projected Landweber Algorithm 12.2.5 The Split-Feasibility Problem 12.2.6 An Extension of the CQ Algorithm 12.2.7 The Algebraic Reconstruction Technique 12.2.8 Double ART 12.3 Regularization 12.3.1 Norm-Constrained Least-Squares 12.3.2 Regularizing Landweber\'s Algorithm 12.3.3 Regularizing the ART 12.4 Nonnegative Systems of Linear Equations 12.4.1 The Multiplicative ART 12.4.2 MART I 12.4.3 MART II 12.4.4 The Simultaneous MART 12.4.5 The EMML Iteration 12.4.6 Alternating Minimization 12.4.7 The Row-Action Variant of EMML 12.4.8 EMART I 12.4.9 EMART II 12.5 Regularized SMART and EMML 12.5.1 Regularized SMART 12.5.2 Regularized EMML 12.6 Block-Iterative Methods 12.7 Exercises 13. Conjugate-Direction Methods 13.1 Chapter Summary 13.2 Iterative Minimization 13.3 Quadratic Optimization 13.4 Conjugate Bases for RJ 13.4.1 Conjugate Directions 13.4.2 The Gram{Schmidt Method 13.5 The Conjugate Gradient Method 13.5.1 The Main Idea 13.5.2 A Recursive Formula 13.6 Krylov Subspaces 13.7 Extensions of the CGM 13.8 Exercises 14. Operators 14.1 Chapter Summary 14.2 Operators 14.3 Contraction Operators 14.3.1 Lipschitz-Continuous Operators 14.3.2 Nonexpansive Operators 14.3.3 Strict Contractions 14.3.4 Eventual Strict Contractions 14.3.5 Instability 14.4 Orthogonal-Projection Operators 14.4.1 Properties of the Operator PC 14.4.2 PC Is Nonexpansive 14.4.3 PC Is Firmly Nonexpansive 14.4.4 The Search for Other Properties of PC 14.5 Two Useful Identities 14.6 Averaged Operators 14.7 Gradient Operators 14.8 The Krasnosel\'skii{Mann{Opial Theorem 14.9 A ne-Linear Operators 14.10 Paracontractive Operators 14.10.1 Linear and A ne Paracontractions 14.10.2 The Elsner{Koltracht{Neumann Theorem 14.11 Matrix Norms 14.11.1 Induced Matrix Norms 14.11.2 Condition Number of a Square Matrix 14.11.3 Some Examples of Induced Matrix Norms 14.11.4 The Euclidean Norm of a Square Matrix 14.12 Exercises 15. Looking Ahead 15.1 Chapter Summary 15.2 Sequential Unconstrained Minimization 15.3 Examples of SUM 15.3.1 Barrier-Function Methods 15.3.2 Penalty-Function Methods 15.4 Auxiliary-Function Methods 15.4.1 General AF Methods 15.4.2 AF Requirements 15.5 The SUMMA Class of AF Methods Bibliography Back Cover