دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Robert L. L. Devaney
سری:
ISBN (شابک) : 0367235994, 9780367235994
ناشر: Chapman and Hall/CRC
سال نشر: 2020
تعداد صفحات: 329
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب A First Course In Chaotic Dynamical Systems: Theory And Experiment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اولین دوره در سیستم های دینامیکی آشفته: نظریه و آزمایش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition
The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics.
The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses.
Features
About the Author
Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.
Cover Half Title Series Page Title Page Copyright Page Contents Preface to the Second Edition 1. A Visual and Historical Tour 1.1 Images from Dynamical Systems 1.2 A Brief History of Dynamics 2. Examples of Dynamical Systems 2.1 An Example from Finance 2.2 An Example from Ecology 2.3 Finding Roots and Solving Equations 2.4 Differential Equations 3. Orbits 3.1 Iteration 3.2 Orbits 3.3 Types of Orbits 3.4 Other Orbits 3.5 The Doubling Function 3.6 Experiment: The Computer May Lie 4. Graphical Analysis 4.1 Graphical Analysis 4.2 Orbit Analysis 4.3 The Phase Portrait 5. Fixed and Periodic Points 5.1 A Fixed Point Theorem 5.2 Attraction and Repulsion 5.3 Calculus of Fixed Points 5.4 Why Is This True? 5.5 Periodic Points 5.6 Experiment: Rates of Convergence 6. Bifurcations 6.1 Dynamics of the Quadratic Map 6.2 The Saddle-Node Bifurcation 6.3 The Period-Doubling Bifurcation 6.4 Experiment: The Transition to Chaos 7. The Quadratic Family 7.1 The Case c = −2 7.2 The Case c < −2 7.3 The Cantor Middle-Thirds Set 8. Transition to Chaos 8.1 The Orbit Diagram 8.2 The Period-Doubling Route to Chaos 8.3 Experiment: Windows in the Orbit Diagram 9. Symbolic Dynamics 9.1 Itineraries 9.2 The Sequence Space 9.3 The Shift Map 9.4 Conjugacy 10. Chaos 10.1 Three Properties of a Chaotic System 10.2 Other Chaotic Systems 10.3 Manifestations of Chaos 10.4 Experiment: Feigenbaum’s Constant 11. Sharkovsky’s Theorem 11.1 Period 3 Implies Chaos 11.2 Sharkovsky’s Theorem 11.3 The Period-3 Window 11.4 Subshifts of Finite Type 12. Role of the Critical Point 12.1 The Schwarzian Derivative 12.2 Critical Points and Basins of Attraction 13. Newton’s Method 13.1 Basic Properties 13.2 Convergence and Nonconvergence 14. Fractals 14.1 The Chaos Game 14.2 The Cantor Set Revisited 14.3 The Sierpinski Triangle 14.4 The Sierpinski Carpet 14.5 The Koch Snowflake 14.6 Topological Dimension 14.7 Fractal Dimension 14.8 Iterated Function Systems 14.9 Experiment: Find the Iterated Function Systems 14.10 Experiment: A “Real” Chaos Game 15. Complex Functions 15.1 Complex Arithmetic 15.2 Complex Square Roots 15.3 Linear Complex Functions 15.4 Calculus of Complex Functions 16. The Julia Set 16.1 The Squaring Function 16.2 Another Chaotic Quadratic Function 16.3 Cantor Sets Again 16.4 Computing the Filled Julia Set 16.5 Experiment: Filled Julia Sets and Critical Orbits 16.6 The Julia Set as a Repeller 17. The Mandelbrot Set 17.1 The Fundamental Dichotomy 17.2 The Mandelbrot Set 17.3 Complex Bifurcations 17.4 Experiment: Periods of the Bulbs 17.5 Experiment: Periods of the Other Bulbs 17.6 Experiment: How to Add 17.7 Experiment: Find the Julia Set 17.8 Experiment: Similarity of the Mandelbrot Set and Julia Sets 18. Other Complex Dynamical Systems 18.1 Cubic Polynomials 18.2 Rational Maps 18.3 Exponential Functions 18.4 Trigonometric Functions 18.5 Complex Newton’s Method Appendix A: Mathematical Preliminaries A.1 Functions A.2 Some Ideas from Calculus A.3 Open and Closed Sets A.4 Other Topological Concepts Bibliography Index