ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب A First Course In Chaotic Dynamical Systems: Theory And Experiment

دانلود کتاب اولین دوره در سیستم های دینامیکی آشفته: نظریه و آزمایش

A First Course In Chaotic Dynamical Systems: Theory And Experiment

مشخصات کتاب

A First Course In Chaotic Dynamical Systems: Theory And Experiment

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0367235994, 9780367235994 
ناشر: Chapman and Hall/CRC 
سال نشر: 2020 
تعداد صفحات: 329 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب A First Course In Chaotic Dynamical Systems: Theory And Experiment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اولین دوره در سیستم های دینامیکی آشفته: نظریه و آزمایش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اولین دوره در سیستم های دینامیکی آشفته: نظریه و آزمایش


توضیحاتی درمورد کتاب به خارجی

A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition

The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics.

The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses.

Features

  • More extensive coverage of fractals, including objects like the Sierpinski carpet and others
    that appear as Julia sets in the later sections on complex dynamics, as well as an actual
    chaos "game."
  • More detailed coverage of complex dynamical systems like the quadratic family
    and the exponential maps.
  • New sections on other complex dynamical systems like rational maps.
  • A number of new and expanded computer experiments for students to perform.

About the Author

Robert L. Devaney is currently professor of mathematics at Boston University. He received his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Contents
Preface to the Second Edition
1. A Visual and Historical Tour
	1.1 Images from Dynamical Systems
	1.2 A Brief History of Dynamics
2. Examples of Dynamical Systems
	2.1 An Example from Finance
	2.2 An Example from Ecology
	2.3 Finding Roots and Solving Equations
	2.4 Differential Equations
3. Orbits
	3.1 Iteration
	3.2 Orbits
	3.3 Types of Orbits
	3.4 Other Orbits
	3.5 The Doubling Function
	3.6 Experiment: The Computer May Lie
4. Graphical Analysis
	4.1 Graphical Analysis
	4.2 Orbit Analysis
	4.3 The Phase Portrait
5. Fixed and Periodic Points
	5.1 A Fixed Point Theorem
	5.2 Attraction and Repulsion
	5.3 Calculus of Fixed Points
	5.4 Why Is This True?
	5.5 Periodic Points
	5.6 Experiment: Rates of Convergence
6. Bifurcations
	6.1 Dynamics of the Quadratic Map
	6.2 The Saddle-Node Bifurcation
	6.3 The Period-Doubling Bifurcation
	6.4 Experiment: The Transition to Chaos
7. The Quadratic Family
	7.1 The Case c = −2
	7.2 The Case c < −2
	7.3 The Cantor Middle-Thirds Set
8. Transition to Chaos
	8.1 The Orbit Diagram
	8.2 The Period-Doubling Route to Chaos
	8.3 Experiment: Windows in the Orbit Diagram
9. Symbolic Dynamics
	9.1 Itineraries
	9.2 The Sequence Space
	9.3 The Shift Map
	9.4 Conjugacy
10. Chaos
	10.1 Three Properties of a Chaotic System
	10.2 Other Chaotic Systems
	10.3 Manifestations of Chaos
	10.4 Experiment: Feigenbaum’s Constant
11. Sharkovsky’s Theorem
	11.1 Period 3 Implies Chaos
	11.2 Sharkovsky’s Theorem
	11.3 The Period-3 Window
	11.4 Subshifts of Finite Type
12. Role of the Critical Point
	12.1 The Schwarzian Derivative
	12.2 Critical Points and Basins of Attraction
13. Newton’s Method
	13.1 Basic Properties
	13.2 Convergence and Nonconvergence
14. Fractals
	14.1 The Chaos Game
	14.2 The Cantor Set Revisited
	14.3 The Sierpinski Triangle
	14.4 The Sierpinski Carpet
	14.5 The Koch Snowflake
	14.6 Topological Dimension
	14.7 Fractal Dimension
	14.8 Iterated Function Systems
	14.9 Experiment: Find the Iterated Function Systems
	14.10 Experiment: A “Real” Chaos Game
15. Complex Functions
	15.1 Complex Arithmetic
	15.2 Complex Square Roots
	15.3 Linear Complex Functions
	15.4 Calculus of Complex Functions
16. The Julia Set
	16.1 The Squaring Function
	16.2 Another Chaotic Quadratic Function
	16.3 Cantor Sets Again
	16.4 Computing the Filled Julia Set
	16.5 Experiment: Filled Julia Sets and Critical Orbits
	16.6 The Julia Set as a Repeller
17. The Mandelbrot Set
	17.1 The Fundamental Dichotomy
	17.2 The Mandelbrot Set
	17.3 Complex Bifurcations
	17.4 Experiment: Periods of the Bulbs
	17.5 Experiment: Periods of the Other Bulbs
	17.6 Experiment: How to Add
	17.7 Experiment: Find the Julia Set
	17.8 Experiment: Similarity of the Mandelbrot Set and Julia Sets
18. Other Complex Dynamical Systems
	18.1 Cubic Polynomials
	18.2 Rational Maps
	18.3 Exponential Functions
	18.4 Trigonometric Functions
	18.5 Complex Newton’s Method
Appendix A: Mathematical Preliminaries
	A.1 Functions
	A.2 Some Ideas from Calculus
	A.3 Open and Closed Sets
	A.4 Other Topological Concepts
Bibliography
Index




نظرات کاربران